MOTIVIC SPECTRA AND UNIVERSALITY OF K-THEORY

TONI ANNALA AND RYOMEI IWASA

ABSTRACT. We develop a theory of motivic spectra in a broad generality; in particular A^1-homotopy invariance is not assumed. As an application, we prove that K-theory of schemes is a universal Zariski sheaf of spectra which is equipped with an action of the Picard stack and satisfies projective bundle formula.

CONTENTS

0. Introduction 2
 0.1. Universality of K-theory 2
 0.2. Motivic spectra 2
 0.3. Organization of the paper 4
 0.4. Acknowledgement 4
1. Formal inversion, spectra, and telescopes 5
 1.1. Categorical conventions 5
 1.2. Formal inversion 6
 1.3. c-spectra 6
 1.4. c-telescopes 9
 1.5. Formal properties of spectra and telescopes 11
 1.6. Comparison of spectra and telescopes 12
2. Motivic spectra and fundamental stability 13
 2.1. Algebro-geometric conventions 13
 2.2. Definition of motivic spectra 13
 2.3. Fundamental motivic spectra 15
 2.4. Fundamental stability 16
3. Orientations and projective bundle formula 20
 3.1. Orientation 20
 3.2. Projective bundle formula 22
 3.3. Elementary blowup excision 22
4. Cohomology of the moduli stack of vector bundles 25
 4.1. Cohomology of the Picard stack 25
 4.2. Chern classes and formal group laws 27
5. Applications to K-theory 30
 5.1. Cohomology of the K-theory stack 30
 5.2. \mathbb{P}^1-periodicity 31
 5.3. Universality of K-theory 33
 5.4. Universality of Selmer K-theory 35
Appendix A. Categorical toolbox 37
 A.1. Modules over commutative algebras 37
 A.2. Presentably \mathcal{M}-monoidal ∞-categories 40

Date: April 7, 2022.
0. Introduction

Algebraic K-theory is a spectrum-valued invariant of categories that is characterized by a universal property. The point we would like to emphasize here is that, when restricted to schemes, K-theory has much richer structures, such as Adams operations and conjectural motivic filtrations, which lead to deep problems in algebraic geometry. This paper was born out of the motivation to understand those further structures.

We develop a theory of motivic spectra without assuming \mathbb{A}^1-homotopy invariance and apply it to K-theory.

0.1. Universality of K-theory. Our main result on K-theory is an algebraic analogue of Snaith’s theorem for topological K-theory in [Sna79, Sna83] and a non-\mathbb{A}^1-localized refinement of the main theorem in [GS09, SØ09]. To fix the notation, let \mathcal{S} denote the 1-topos of Zariski sheaves on smooth schemes (\mathcal{S} stands for “stacks”). Let $\mathcal{P}ic$ denote the Picard stack which we regard as an E_1-monoid in \mathcal{S}. Then its stabilization $S[\mathcal{P}ic]$ is an E_1-algebra in $\text{Sp}(\mathcal{S})$. We say that an $S[\mathcal{P}ic]$-module E in $\text{Sp}(\mathcal{S})$ satisfies projective bundle formula if, for every $n \geq 1$ and every smooth scheme X, the map

$$
\sum_{i=0}^{n} \beta^i : \bigoplus_{i=0}^{n} E(X) \to E(\mathbb{P}^n_X)
$$

is an equivalence, where β is the Bott element $1 - [\mathcal{O}(-1)]$. By abstract reason, there exists a localization $L_{pbf}: \text{Mod}_{S[\mathcal{P}ic]}(\text{Sp}(\mathcal{S})) \to \text{Mod}_{S[\mathcal{P}ic]}(\text{Sp}(\mathcal{S}))$ whose essential image is spanned by $S[\mathcal{P}ic]$-modules which satisfy projective bundle formula. Let K denote the non-connective K-theory which we regard as an E_{∞}-algebra in $\text{Sp}(\mathcal{S})$. Note that we have a canonical morphism of E_1-algebras $S[\mathcal{P}ic] \to K$ and it factors through the localization $L_{pbf}S[\mathcal{P}ic]$ since K-theory satisfies projective bundle formula. Then the main theorem is stated as follows.

0.1.1. Theorem. The canonical map

$$
L_{pbf}S[\mathcal{P}ic] \to K
$$

is an equivalence of E_{∞}-algebras in $\text{Sp}(\mathcal{S})$.

In the body of the paper, we discuss and prove the case over an arbitrary qcqs derived scheme. Also, a universality of the Selmer K-theory is established. The basic idea of the proof is to regard the projective bundle formula as \mathbb{P}^1-periodicity and work in a category where \mathbb{P}^1 is formally inverted. This leads to our formulation of motivic spectra, which we explain next.

0.2. Motivic spectra. The crucial idea of the theory of motives is to invert the pointed projective line \mathbb{P}^1, as Grothendieck first considered in his construction of the category of pure motives. Voevodsky’s stable motivic homotopy category (cf. [Voe98, MV99]) is based on the same idea and has been studied extensively in the last decades, but it completely relies on \mathbb{A}^1-homotopy invariance. We would like to propose more general definition.

We define the ∞-category of motivic spectra to be the formal inversion of \mathbb{P}^1 in \mathcal{S},

$$
\text{Sp}_{\mathbb{P}^1} := \text{St}_\mathcal{S}[(\mathbb{P}^1)^{-1}],
$$

where \mathbb{P}^1 is pointed by ∞. More precisely, $\text{Sp}_{\mathbb{P}^1}$ is a universal presentably symmetric monoidal ∞-category together with a symmetric monoidal functor $\Sigma_{\text{Sp}_{\mathbb{P}^1}}: \text{St}_\mathcal{S} \to \text{Sp}_{\mathbb{P}^1}$ which carries \mathbb{P}^1 to an invertible object. More
generally, for an ∞-category \(\mathcal{V} \) presentably tensored over \(\text{St} \) (i.e., an \(\text{St} \)-module object in \(\text{Pr}^L \)), we define the \(\infty \)-category of motivic spectra in \(\mathcal{V} \) by

\[
\text{Sp}_{\mathcal{V}}(\mathcal{V}) := \mathcal{V}((\mathbb{P}^1)^{-1}) \cong \text{Sp}_{\text{St}} \otimes_{\text{St}} \mathcal{V},
\]

where the tensor product is taken in the \(\infty \)-category \(\text{Pr}^L \) of presentable \(\infty \)-categories. One can think of this construction as an analogue of stabilization of \(\infty \)-categories, replacing the \(\infty \)-topos \(\text{Ani} \) of anima with \(\text{St} \) and the circle \(S^1 \) with \(\mathbb{P}^1 \).

We warn that, contrary to the usual stabilization, the \(\infty \)-category \(\text{Sp}_{\mathcal{V}}(\mathcal{V}) \) may not be equivalent to the sequential colimit in \(\text{Pr}^L \)

\[
\text{Tel}_{\mathcal{V}}(\mathcal{V}) := \colim(\mathcal{V} \to \mathcal{V} \to \mathcal{V} \to \ldots).
\]

However, there is still a canonical functor \(\text{Sp}_{\mathcal{V}}(\mathcal{V}) \to \text{Tel}_{\mathcal{V}}(\mathcal{V}) \) and it is conservative. To overcome this difficulty, we extract special type of motivic spectra. We say that a motivic spectrum \(E \) in \(\mathcal{V} \) is fundamental if the canonical map

\[
\mathbb{P}^1 \to \Omega^1 G_m \to E
\]

admits a left inverse. Let \(\text{Sp}_{\mathcal{V}}(\mathcal{V})^{\text{fd}} \) denote the full subcategory of \(\text{Sp}_{\mathcal{V}}(\mathcal{V}) \) spanned by fundamental motivic spectra. Roughly speaking, a motivic spectrum is fundamental if and only if it satisfies Bass fundamental exact sequence, and then we employ the idea of Bass construction as in [TT90] to prove the following.

0.2.1. **Theorem.** The adjunction

\[
\Sigma: \text{Sp}_{\mathcal{V}} \rightleftarrows \text{Sp}_{\mathcal{V}}(\text{Sp}) : \Omega^1
\]

restricts to an adjoint equivalence

\[
\Sigma: \text{Sp}_{\mathcal{V}}^{\text{fd}} \rightleftarrows \text{Sp}_{\mathcal{V}}(\text{Sp})^{\text{fd}} : \Omega^1.
\]

To move further on, we develop the theory of orientation for motivic spectra in parallel with the theory of complex orientation in topology. We say that a motivic spectrum \(E \) is orientable if the map

\[
[\theta(1)] \otimes \text{id}_E : \mathbb{P}^1 \otimes E \to \text{Pic} \otimes E
\]

admits a left inverse. Let \(\text{Sp}_{\mathcal{V}}(\mathcal{V})^{\text{fd}} \) denote the full subcategory of \(\text{Sp}_{\mathcal{V}}(\mathcal{V}) \) spanned by fundamental motivic spectra. Roughly speaking, a motivic spectrum is fundamental if and only if it satisfies Bass fundamental exact sequence, and then we employ the idea of Bass construction as in [TT90] to prove the following.

0.2.2. **Theorem.** Let \(E \) be a homotopy commutative oriented motivic ring spectrum which satisfies projective bundle formula. Then there is a natural ring isomorphism

\[
E^{*,*}(\mathcal{V}\text{ect}_n, S) \cong E^{*,*}(S)[[c_1, \ldots, c_n]]
\]

for every qcqs scheme \(S \).

0.2.3. **Remark.** All cohomology theories treated in [AI22] were assumed to have finite quasi-smooth transfers. We have succeeded in removing this assumption by introducing the notion of oriented motivic spectra. Although oriented motivic spectra are expected to admit transfers in good generality, we do not discuss this problem in this paper.

Let us go back to \(K \)-theory. We see that \(K \)-theory of schemes is represented by a motivic spectrum \(K \), which is canonically oriented, satisfies projective bundle formula, and periodic, i.e., \(\Sigma_1 \otimes \Omega^\infty K \cong K \). In particular, it has a unique infinite delooping as motivic spectra by Theorem 0.2.1, which recovers the non-connective \(K \)-theory. Furthermore, we prove an equivalence of motivic spectra

\[
K \cong \colim(\Sigma^\infty \otimes \Omega^\infty K \to \Sigma^{\infty-1} \otimes \Omega^\infty K \to \Sigma^{\infty-2} \otimes \Omega^\infty K \to \ldots).
\]
Consequently, we get an equivalence
\[
\operatorname{Map}(K, E) \simeq \lim_{\mathcal{n}} \operatorname{Map}(\Omega^\infty K, \Omega^{\infty-n} E)
\]
for a motivic spectrum E, and each term in the limit is calculated by Theorem 0.2.2 if E satisfies projective bundle formula. Then, by proceeding with calculation, we obtain Theorem 0.1.1.

0.3. **Organization of the paper.** Section 1 deals with formal inversion in a purely categorical setting. In Section 2, we define motivic spectra and prove Theorem 0.2.1 in a more general form. In Section 3, we discuss orientations and projective bundle formula for motivic spectra. In Section 4, we develop a theory of Chern classes for oriented motivic spectra and prove Theorem 0.2.2. In Section 5, we prove Theorem 0.1.1 and its variant for Selmer K-theory. Appendix A collects some categorical preliminaries. Each section begins with a brief summary.

0.4. **Acknowledgement.** The formulation of Theorem 0.1.1 is due to Dustin Clausen. We would like to thank him for the essential remark that our previous work [AI22] may be useful in proving Theorem 0.1.1, and for many helpful discussions. We also thank Lars Hesselholt, Markus Land, and Shuji Saito for helpful discussions. The first author was supported by the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters. The second author was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 896517.
1. **Formal inversion, spectra, and telescopes**

Let \mathcal{C} be a presentably symmetric monoidal ∞-category and c an object in \mathcal{C}. Then we will see that there exists a presentably symmetric monoidal ∞-category $\mathcal{C}[c^{-1}]$ which is obtained by formally inverting c in \mathcal{C}. More generally, for an ∞-category \mathcal{D} presentably tensored over \mathcal{C}, the formal inversion $\mathcal{D}[c^{-1}]$ is well-defined as an ∞-category presentably tensored over $\mathcal{C}[c^{-1}]$. The purpose of this section is to present basic tools for studying these ∞-categories.

Let us briefly recall localization of modules over commutative rings. Let R be a commutative ring, r an element in R, and M an R-module. Then the localization $M[r^{-1}]$ is modeled by the sequential colimit

$$M[r^{-1}] \simeq \colim(M \xrightarrow{r} M \xrightarrow{r} M \xrightarrow{r} \cdots).$$

One might wonder if there would be an analogue for formal inversion of ∞-categories. However, it turns out that the analogous construction does not give a correct model in general. We can consider the sequential colimit in \Pr^L

$$\Tel_c(\mathcal{D}) := \colim(\mathcal{D} \xrightarrow{c} \mathcal{D} \xrightarrow{c} \mathcal{D} \rightarrow \cdots),$$

but it is not equivalent to the formal inversion $\mathcal{D}[c^{-1}]$ in general. The point is that we need to incorporate more symmetricity in order to obtain a correct model. This is achieved by what we call c-spectra; in other literature, it is often referred to as symmetric c-spectra. We will define the ∞-category $\Sp_c(\mathcal{D})$ of c-spectra and prove that it is equivalent to the formal inversion $\mathcal{D}[c^{-1}]$ completely in general (Proposition 1.3.13).

We refer to the sequential colimit $\Tel_c(\mathcal{D})$ as the ∞-category of c-telescopes. c-telescopes are structurally simpler than c-spectra and play a complementary role for studying c-spectra. The upshot is that there is a canonical conservative functor $\Sp_c(\mathcal{D}) \rightarrow \Tel_c(\mathcal{D})$ and it is an equivalence under a certain symmetricity on c (Proposition 1.6.3). See [Hov01, Rob15] for related works.

1.1. **Categorical conventions.** We generally follow the notation in [Lur17a, Lur17b]. See also §A.1 for the theory of modules over commutative algebras. The following is a glossary of terms that may require further explanations.

1.1.1 (Anima). We adopt the term “anima” following [ČS21] and let Ani denote the ∞-category of anima, which is the ∞-category of spaces in the sense of [Lur17a].

1.1.2 (∞-category of ∞-categories). Let Cat_∞ denote the ∞-category of possibly large ∞-categories and $\text{Cat}_\infty^{\text{sm}}$ denote its full subcategory spanned by small ∞-categories. We suppose that Cat_∞ and $\text{Cat}_\infty^{\text{sm}}$ are equipped with the cartesian symmetric monoidal structures.

1.1.3 (Tensored ∞-category). Let \mathcal{C} be a monoidal ∞-category. Recall from [Lur17b, 4.2.1.19] that an ∞-category \mathcal{D} is left-tensored over \mathcal{C} if we are supplied with an LM-monoidal ∞-category \mathcal{D}^op, an equivalence of monoidal ∞-categories $\mathcal{D}^\text{op}_\mathcal{C} \simeq \mathcal{C}$, and an equivalence of ∞-categories $\mathcal{D}^\text{op}_m \simeq \mathcal{D}$. Note that an ∞-category left-tensored over \mathcal{C} is identified with a left \mathcal{C}-module object in Cat_∞.

When \mathcal{C} underlies a symmetric monoidal ∞-category, we omit the prefix “left” from the notation, because left or right does not make any difference. Actually, we can replace the operad LM^op by a simpler operad M^op to deal with this case, cf. §A.1.

1.1.4 (Presentably symmetric/tensored ∞-category). Let \Pr_∞ denote the ∞-category of presentable ∞-categories and colimit-preserving functors. We suppose that \Pr_∞ is equipped with the symmetric monoidal structure as in [Lur17b, 4.8.1.15]. We refer to a commutative algebra object in \Pr_∞ as a presentably symmetric monoidal ∞-category. Given a presentably symmetric monoidal ∞-category \mathcal{C}, we refer to a \mathcal{C}-module object in \Pr_∞ as an ∞-category presentably tensored over \mathcal{C}, cf. §A.2.

1.1.5 (Linear functor). Let \mathcal{D} and \mathcal{D}' be ∞-categories left-tensored over a monoidal category \mathcal{C}. Recall from [Lur17b, 4.6.2.7] that a (lax) \mathcal{C}-linear functor $\mathcal{D} \rightarrow \mathcal{D}'$ is a (lax) LM-monoidal functor $\mathcal{D}^\text{op} \rightarrow \mathcal{D}'^\text{op}$ which is the identity on \mathcal{C}. Note that a \mathcal{C}-linear functor is identified with a morphism in $\text{LMod}_{\mathcal{C}}(\text{Cat})$.

1.3.13 (Tensored ∞-category). Let \mathcal{C} be a monoidal ∞-category. Recall from [Lur17b, 4.2.1.19] that an ∞-category \mathcal{D} is left-tensored over \mathcal{C} if we are supplied with an LM-monoidal ∞-category \mathcal{D}^op, an equivalence of monoidal ∞-categories $\mathcal{D}^\text{op}_\mathcal{C} \simeq \mathcal{C}$, and an equivalence of ∞-categories $\mathcal{D}^\text{op}_m \simeq \mathcal{D}$. Note that an ∞-category left-tensored over \mathcal{C} is identified with a left \mathcal{C}-module object in Cat_∞.

When \mathcal{C} underlies a symmetric monoidal ∞-category, we omit the prefix “left” from the notation, because left or right does not make any difference. Actually, we can replace the operad LM^op by a simpler operad M^op to deal with this case, cf. §A.1.
1.1.6 (Exponential object). Let \(\mathcal{C} \) be a presentably symmetric monoidal \(\infty \)-category and \(\mathcal{D} \) an \(\infty \)-category presentably tensored over \(\mathcal{C} \). For \(X, Y \in \mathcal{D} \) and \(A \in \mathcal{C} \), the exponential objects \(X^Y \in \mathcal{C} \) and \(X^A \in \mathcal{D} \) are defined by the adjunctions

\[
- \otimes Y : \mathcal{C} \rightleftarrows \mathcal{D} : (-)^Y \quad \quad A \otimes - : \mathcal{D} \rightleftarrows \mathcal{D} : (-)^A.
\]

We also write \(\text{Map}(Y, X) := X^Y \) for \(X, Y \in \mathcal{D} \).

1.1.7 (Smashing localization). Recall that a localization \(L : \mathcal{D} \to \mathcal{D} \) is a functor of the form \(L = G \circ F \) for some functor \(F : \mathcal{D} \to \mathcal{D}' \) which admits a fully faithful right adjoint \(G : \mathcal{D}' \to \mathcal{D} \). Suppose that an \(\infty \)-category \(\mathcal{D} \) is tensored over a symmetric monoidal category \(\mathcal{C} \). Then we say that a localization \(L : \mathcal{D} \to \mathcal{D} \) is \emph{smashing} if it has the form \(L = A \otimes - \) for some commutative algebra object \(A \) in \(\mathcal{C} \).

1.2. Formal inversion.

1.2.1. We fix a presentably symmetric monoidal \(\infty \)-category \(\mathcal{C} \) and an object \(c \) in \(\mathcal{C} \) throughout this section. We usually denote by \(\mathcal{D} \) an \(\infty \)-category presentably tensored over \(\mathcal{C} \).

1.2.2. \textbf{Proposition.} There exists a \emph{smashing localization}

\[
(-)[c^{-1}] : \text{Mod}_c(\Pr^L) \to \text{Mod}_c(\Pr^L)
\]

whose essential image is spanned by \(\infty \)-categories presentably tensored over \(\mathcal{C} \) on which \(c \) acts as an equivalence.

\textit{Proof.} This is [Rob15, Proposition 2.9]. In what follows, we will construct a concrete model of the localization \((-)[c^{-1}] \), which independently proves its existence, cf. Proposition 1.3.13. Then the assertion that it is smashing is a formal consequence of the obvious fact that its essential image is both an ideal and a co-ideal of \(\text{Mod}_c(\Pr^L) \), cf. Lemma A.5.2. \(\square \)

1.2.3 (Formal inversion). For an \(\infty \)-category \(\mathcal{D} \) presentably tensored over \(\mathcal{C} \), we refer to \(\mathcal{D}[c^{-1}] \) as the \emph{formal inversion of} \(c \) in \(\mathcal{D} \).

1.2.4. \textit{Remark.} Since the localization \((-)[c^{-1}] \) is smashing, the unit map \(u : \mathcal{C} \to \mathcal{C}[c^{-1}] \) exhibits \(\mathcal{C}[c^{-1}] \) as an idempotent object in \(\text{Mod}_c(\Pr^L) \), and thus \(\mathcal{C}[c^{-1}] \) admits a unique presentably symmetric monoidal structure for which \(u \) is (uniquely) promoted to a symmetric monoidal functor. Then the restriction of scalars along \(u \) induces an equivalence

\[
\text{Mod}_c[c^{-1}](\Pr^L) \xrightarrow{\sim} \text{Mod}_c(\Pr^L)[c^{-1}].
\]

In particular, the formal inversion \(\mathcal{D}[c^{-1}] \) is presentably tensored over \(\mathcal{C}[c^{-1}] \) in a canonical way.

1.2.5. \textbf{Lemma.} There is a natural \(\mathcal{C} \)-linear equivalence

\[
(\mathcal{D}[c^{-1}])[d^{-1}] \simeq (\mathcal{D}[(c \otimes d)^{-1}])
\]

for every \(\infty \)-category \(\mathcal{D} \) presentably tensored over \(\mathcal{C} \) and for every \(c, d \in \mathcal{C} \).

\textit{Proof.} It is straightforward to check that both sides have the same universal property. \(\square \)

1.3. \(\mathcal{C} \)-spectra.

1.3.1. \textbf{Construction.} Let \(B\Sigma_{\mathbb{N}} \) be the free commutative monoid in \(\text{Ani} \) with a single generator \(e \). We consider the lax symmetric monoidal functor

\[
(-)^L := \text{Fun}(B\Sigma_{\mathbb{N}}, -) : \Pr^L \to \Pr^L,
\]

which encodes the Day convolution (Construction A.4.1), and apply it to a presentably symmetric monoidal \(\infty \)-category \(\mathcal{C} \) and an \(\infty \)-category \(\mathcal{D} \) presentably tensored over \(\mathcal{C} \). Then \(\mathcal{C}^L \) is a presentably symmetric monoidal \(\infty \)-category and \(\mathcal{D}^L \) is presentably tensored over \(\mathcal{C}^L \). We consider the following natural transformations:

\[
L^L \quad \quad R^L
\]
Let $F: \text{id} \to (-)^\Sigma$ be the natural transformation obtained as the left Kan extension along the morphism $\ast \to B\Sigma_N$ of commutative monoids.

Let $s_+: (-)^\Sigma \to (-)^\Sigma$ be the natural transformation obtained as the left Kan extension along the morphism $e: B\Sigma_N \to B\Sigma_N$ of $B\Sigma_N$-modules.

Then $F: \mathcal{C} \to \mathcal{C}^\Sigma$ is symmetric monoidal, $F: \mathcal{D} \to \mathcal{D}^\Sigma$ is \mathcal{C}-linear, and $s_+: \mathcal{D}^\Sigma \to \mathcal{D}^\Sigma$ is \mathcal{C}^Σ-linear. Furthermore, we have canonical equivalences (Lemma A.4.4)

$$\mathcal{D}^\Sigma \simeq \mathcal{C}^\Sigma \otimes_{\mathcal{C}} \mathcal{D} \quad \quad (F \to \mathcal{D}^\Sigma) \simeq (F \to \mathcal{C}^\Sigma) \otimes_{\mathcal{C}} \mathcal{D} \quad \quad (\mathcal{D}^\Sigma \to \mathcal{D}) \simeq (\mathcal{C}^\Sigma \to \mathcal{C}) \otimes_{\mathcal{C}} \mathcal{D},$$

where the tensor products are taken in $\text{Mod}_\mathcal{C}(\text{Pr}^\Sigma)$. We consider the adjunctions

$$\mathcal{D}^\Sigma : \mathcal{C} \leftrightarrow \mathcal{D}^\Sigma : s_-,$$

where U is the pre-composition by $\ast \to B\Sigma_N$ and s_- is the pre-composition by $e: B\Sigma_N \to B\Sigma_N$. For $n \geq 0$, we write $F_n := (s_+)^n \circ F$ and $U_n := U \circ (s_-)^n$.

1.3.2. **Remark.** We illustrate the previous construction in a more concrete way. An object in \mathcal{D}^Σ is given by a sequence $Y = (Y_0, Y_1, \ldots)$ with a Σ_n-action on Y_n. For $X \in \mathcal{C}^\Sigma$ and $Y \in \mathcal{D}^\Sigma$, we have a formula

$$(X \otimes Y)_n = \bigoplus_{p+q=n} \Sigma_p \otimes_{\Sigma_p \times \Sigma_q} (X_p \otimes Y_q).$$

The functor $U: \mathcal{D}^\Sigma \to \mathcal{D}$ carries Y to Y_0 and the functor $F: \mathcal{D} \to \mathcal{D}^\Sigma$ carries d to (d, \ast, \ast, \ldots), where \ast is an initial object of \mathcal{D}. For $Y \in \mathcal{D}^\Sigma$, we have $s_+(Y)_n = Y_{n+1}$ with the restricted action of Σ_n on Y_{n+1} and

$$s_+(Y)_n = \begin{cases} \ast & \text{if } n = 0 \\ \Sigma_n \otimes_{\Sigma_{n+1}} Y_{n-1} & \text{if } n > 0. \end{cases}$$

In other words, the functor $s_+: \mathcal{D}^\Sigma \to \mathcal{D}^\Sigma$ is the multiplication by $s_+(1) = (\ast, 1, \ast, \ast, \ldots)$.

1.3.3. **Lemma.**

(i) The functors $U_n: \mathcal{D}^\Sigma \to \mathcal{D}$ and $s_-: \mathcal{D}^\Sigma \to \mathcal{D}^\Sigma$ are \mathcal{C}-linear.

(ii) The natural transformation $\text{id}_\mathcal{D} \to U \circ F$ is an equivalence.

(iii) The family of functors $\{U_n: \mathcal{D}^\Sigma \to \mathcal{D}\}_{n \geq 0}$ is conservative.

Proof. For (i), note that these functors are clearly lax \mathcal{C}-linear, but then an easy inspection shows that they are actually \mathcal{C}-linear. (ii) and (iii) are obvious.

1.3.4. **Definition** (Lax c-spectrum). Let S_c be the free commutative algebra in \mathcal{C}^Σ generated by $F_1(c)$. For an ∞-category \mathcal{D} presentably tensored over \mathcal{C}, we define

$$\text{Sp}_c^{\text{lax}}(\mathcal{D}) := \text{Mod}_c(\mathcal{D}^\Sigma)$$

and call it the ∞-category of lax c-spectra in \mathcal{D}. Then $\text{Sp}_c^{\text{lax}}(\mathcal{C})$ admits a presentably symmetric monoidal structure in a canonical way and $\text{Sp}_c^{\text{lax}}(\mathcal{D})$ is a presentably tensored over $\text{Sp}_c^{\text{lax}}(\mathcal{C})$.

1.3.5 (Adjunction). We consider the following adjunctions:

— The adjunction (F, U) together with $S_c \otimes -$ induces an adjunction

$$F_c := S_c \otimes F: \mathcal{D} \leftrightarrow \text{Sp}_c^{\text{lax}}(\mathcal{D}): U.$$

Then $F_c: \mathcal{C} \to \text{Sp}_c^{\text{lax}}(\mathcal{C})$ is symmetric monoidal and $F_c: \mathcal{D} \to \text{Sp}_c^{\text{lax}}(\mathcal{D})$ is \mathcal{C}-linear.

— The adjunction (s_+, s_-) induces an adjunction

$$s_+: \text{Sp}_c^{\text{lax}}(\mathcal{D}) \leftrightarrow \text{Sp}_c^{\text{lax}}(\mathcal{D}): s_-.$$

Then $s_+: \text{Sp}_c^{\text{lax}}(\mathcal{D}) \to \text{Sp}_c^{\text{lax}}(\mathcal{D})$ is $\text{Sp}_c^{\text{lax}}(\mathcal{C})$-linear.

1.3.6. **Lemma.**
(i) We have \(U_n(S_c) \cong c^{an}\) for each \(n \geq 0\).

(ii) The functors \(U_n : \Sp^{lax}_c(\mathcal{D}) \to \mathcal{D}\) and \(s_- : \Sp^{lax}_c(\mathcal{D}) \to \Sp^{lax}_c(\mathcal{D})\) are \(\mathcal{C}\)-linear.

(iii) The natural transformation \(\text{id}_\mathcal{D} \to U \circ F_c\) is an equivalence.

(iv) The family of functors \(\{U_n : \Sp^{lax}_c(\mathcal{D}) \to \mathcal{D}\}_{n \geq 0}\) is conservative.

Proof. We have

\[U_n(S_c) \cong U_n(\text{Sym}^n(F_1(c))) \cong (\Sigma_n \otimes c^{an})_{h\Sigma_n}.
\]

Here the \(\Sigma_n\)-action on \(\Sigma_n \otimes c^{an}\) is the diagonal action, and thus the homotopy orbit is equivalent to \(c^{an}\), which proves (i). The other assertions are immediate from (i) and Lemma 1.3.3. \(\square\)

1.3.7. Construction. For each lax \(c\)-spectrum \(E\) in \(\mathcal{D}\), we have natural equivalences

\[c \otimes s_+ E \cong s_+(c \otimes E) \cong F_1(c) \otimes E.
\]

Hence, the multiplication by \(F_1(c)\) yields a morphism of lax \(c\)-spectra

\[\sigma_E : s_+(c \otimes E) \to E.
\]

We write \(\sigma_E^\#: E \to (s_.E)^\#\) for the adjoint of \(\sigma_E\).

1.3.8. Definition (c-spectrum). A \(c\)-spectrum in \(\mathcal{D}\) is a lax \(c\)-spectrum \(E\) in \(\mathcal{D}\) such that the map \(\sigma_E^\#: E \to (s_.E)^\#\) is an equivalence. Let \(\Sp_c(\mathcal{D})\) denote the full subcategory of \(\Sp^{lax}_c(\mathcal{D})\) spanned by \(c\)-spectra.

1.3.9. Lemma. The \(\infty\)-category \(\Sp_c(\mathcal{D})\) is an accessible localization of \(\Sp^{lax}_c(\mathcal{D})\) with respect to all the maps \(\sigma_E^\#: s_+(c \otimes E) \to E\) for \(E \in \Sp^{lax}_c(\mathcal{D})\).

Proof. Since \(\Sp^{lax}_c(\mathcal{D})\) is presentable and \(s_+\) and \(c \otimes -\) preserve all small colimits, the class of maps \(\{\sigma_E^\#: E \to (s_.E)^\#\}\) is indeed generated by a small set. Then the assertion follows immediately. \(\square\)

1.3.10. Remark. Let \(L\) denote the localization \(\Sp^{lax}_c(\mathcal{D}) \to \Sp_c(\mathcal{D})\). Then it follows from [Lur17b, 2.2.1.9] (see also [Lur17b, 4.1.7.4]) that \(\Sp_c(\mathcal{C})\) admits a unique presentably symmetric monoidal structure for which \(L\) is symmetric monoidal and that \(\Sp_c(\mathcal{D})\) is presentably tensored over \(\Sp_c(\mathcal{C})\) in a unique way so that \(L\) is \(\Sp^{lax}_c(\mathcal{C})\)-linear.

1.3.11 (Adjunction). The adjunctions in 1.3.5 derive the following adjunctions:

\[LF_c : \mathcal{D} \rightleftarrows \Sp_c(\mathcal{D}) : U \quad Ls_+ : \Sp_c(\mathcal{D}) \rightleftarrows \Sp_c(\mathcal{D}) : s_-.
\]

Then \(LF_c : \mathcal{C} \to \Sp_c(\mathcal{C})\) is symmetric monoidal, \(LF_c : \mathcal{D} \to \Sp_c(\mathcal{D})\) is \(\mathcal{C}\)-linear, and \(Ls_+ : \Sp_c(\mathcal{D}) \to \Sp_c(\mathcal{D})\) is \(\Sp_c(\mathcal{C})\)-linear.

1.3.12. Lemma. There are natural equivalences

\[c \otimes E \cong s_.E \quad E^c \cong Ls_+ E
\]

for every \(c\)-spectrum \(E\) in \(\mathcal{D}\), and \(c\) acts as an equivalence on \(\Sp_c(\mathcal{D})\).

Proof. By definition, we have natural equivalences

\[E \cong (s_.E)^c \cong s_-(E^c)
\]

for every \(c\)-spectrum \(E\) in \(\mathcal{D}\). Hence, \(s_+\) and \((-)^c\) are inverse of each other, from which the assertion follows immediately. \(\square\)

1.3.13. Proposition. There is a natural \(\mathcal{C}\)-linear equivalence

\[\mathcal{D}[c^{-1}] \cong \Sp_c(\mathcal{D})
\]

for every \(\infty\)-category \(\mathcal{D}\) presentably tensored over \(\mathcal{C}\).

Proof. It suffices to show the following:
(i) c acts as an equivalence on $\text{Sp}_c(\mathcal{D})$.

(ii) If c acts as an equivalence on \mathcal{D}, then $LF_c : \mathcal{D} \to \text{Sp}_c(\mathcal{D})$ is an equivalence.

We have seen (i) in Lemma 1.3.12. To show (ii), assume that c acts as an equivalence on \mathcal{D}. Note that this assumption implies that a lax c-spectrum E is a c-spectrum if and only if the canonical map $c \otimes E \to s_cE$ is an equivalence, where the tensor product is taken in $\text{Sp}_c^{\text{lax}}(\mathcal{D})$.

We first prove that $U : \text{Sp}_c(\mathcal{D}) \to \mathcal{D}$ is conservative. For a c-spectrum E, we have natural equivalences

$$U_n E \simeq U_{n-1}(s_cE) \simeq U_{n-1}(c \otimes E) \simeq c \otimes (U_{n-1}E),$$

where the tensor product $c \otimes E$ is calculated in \mathcal{D} and thus the last equivalence holds by Lemma 1.3.6 (ii). Since $\{U_n\}_{n \geq 0}$ is conservative by Lemma 1.3.6 (iv), we conclude that $U = U_0$ is conservative.

It remains to show that $\text{id} \simeq U \circ LF_c$. By Lemma 1.3.6 (iii), it suffices to show that $F_c \simeq LF_c$, that is, $F_c(d) = S_c \otimes F(d)$ is a c-spectrum for each $d \in \mathcal{D}$. We need to show that the canonical map $c \otimes (S_c \otimes F(d)) \to s_c(S_c \otimes F(d))$ is an equivalence, and it is reduced to showing that the canonical map $c \otimes S_c \to s_c S_c$ is an equivalence. This follows from Lemma 1.3.6 (i) and the conservativity of $\{U_n\}_{n \geq 0}$. □

1.4. c-telescopes. We develop the theory of c-telescopes in a parallel way with the theory of c-spectra.

1.4.1. Construction. Here is a parallel construction with Construction 1.3.1. We regard \mathbb{N} as a commutative monoid in Ani and consider the lax symmetric monoidal functor

$$(-)^N := \text{Fun}(\mathbb{N}, -) : \text{Pr}^L \to \text{Pr}^L,$$

which encodes the Day convolution, and apply it to a presentably symmetric monoidal ∞-category \mathcal{C} and an ∞-category \mathcal{D} presentably tensored over \mathcal{C}. Then \mathcal{C}^N is a presentably symmetric monoidal ∞-category and \mathcal{D}^N is presentably tensored over \mathcal{C}^N. We consider the following natural transformations:

1. Let $G : \text{id} \to (-)^N$ be the natural transformation obtained as the left Kan extension along the morphism $* \to \mathbb{N}$ of commutative monoids.

2. Let $s_+ : (-)^N \to (-)^N$ be the natural transformation obtained as the left Kan extension along the morphism $+1 : \mathbb{N} \to \mathbb{N}$ of \mathbb{N}-modules.

Then $G : \mathcal{C} \to \mathcal{C}^N$ is symmetric monoidal, $G : \mathcal{D} \to \mathcal{D}^N$ is \mathcal{C}-linear, and $s_+ : \mathcal{D}^N \to \mathcal{D}^N$ is \mathcal{C}^N-linear. We consider the adjunctions

$$G : \mathcal{D} \rightleftarrows \mathcal{D}^N : U \quad s_+ : \mathcal{D}^N \rightleftarrows \mathcal{D}^N : s_-,$$

where U is the pre-composition by $* \to \mathbb{N}$ and s_- is the pre-composition by $+1 : \mathbb{N} \to \mathbb{N}$. For $n \geq 0$, we write $G_n := (s_+)^n \circ G$ and $U_n := U \circ (s_-)^n$.

1.4.2. Definition (Lax c-telescope). Let S_c be the free E_1-algebra in \mathcal{C}^N generated by $G_1(c)$. For an ∞-category \mathcal{D} presentably tensored over \mathcal{C}, we define

$$\text{Tel}^{\text{lax}}_c(\mathcal{D}) := \text{LMod}_{S_c}(\mathcal{D}^N)$$

and call it the ∞-category of lax c-telescopes in \mathcal{D}. Then $\text{Tel}^{\text{lax}}_c(\mathcal{D})$ is presentably tensored over \mathcal{C}^N in a canonical way.

1.4.3. Lemma. Consider the \mathbb{N}-indexed diagram

$$\mathcal{D} \xrightarrow{c^0} \mathcal{D} \xrightarrow{c^1} \mathcal{D} \xrightarrow{c^2} \cdots$$

and let $p : \mathcal{E} \to \mathbb{N}$ be the cocartesian fibration which classifies this diagram. Then there is a natural \mathcal{C}^N-linear equivalence

$$\text{Tel}^{\text{lax}}_c(\mathcal{D}) \simeq \text{Fun}_{p}(\mathbb{N}, \mathcal{E}),$$

where the right hand side is tensored over \mathcal{C}^N as in Construction A.3.4.
Proof. We see that the canonical functor $\text{Fun}_{\mathcal{N}}(\mathcal{N}, \mathcal{E}) \to \mathcal{D}^\mathcal{N}$ exhibits $\text{Fun}_{\mathcal{N}}(\mathcal{N}, \mathcal{E})$ as monadic over $\mathcal{D}^\mathcal{N}$ by using [Lur17b, 4.7.3.5]. Hence, it suffices to show that the resulting monad is equivalent to S_c as monads, but this is straightforward to check.

1.4.4 (Adjunction). We consider the following adjunctions:

— The adjunction (G, U) together with $S_c \otimes -$ induces an adjunction

$$G_c := S_c \otimes G : \mathcal{D} \rightleftarrows \text{Tel}_c^{\text{lax}}(\mathcal{D}) : U.$$

Then G_c is \mathcal{D}_c-linear.

— The adjunction (s_+, s_-) induces an adjunction

$$s_+ : \text{Tel}_c^{\text{lax}}(\mathcal{D}) \rightleftarrows \text{Tel}_c^{\text{lax}}(\mathcal{D}) : s_-.$$

Then s_+ is \mathcal{D}_c^N-linear.

1.4.5. Construction. For each $d \in \mathcal{D}$, we have a natural equivalence

$$U(s_-G_c(d)) \simeq c \otimes d$$

and by adjunction we obtain a morphism of lax c-telescopes

$$\sigma_d : s_+(c \otimes G_c(d)) \to G_c(d).$$

As its dual, we obtain a map $\sigma_d^\# : U(E) \to U(s_-E)^c$ for each lax c-telescope E in \mathcal{D}.

1.4.6. Remark. Construction 1.3.7 and Construction 1.4.5 represent the major difference between c-spectra and c-telescopes. Unlike lax c-spectra, there is no obvious way to construct a natural morphism $s_+(c \otimes E) \to E$ that extends σ_d for a lax c-telescope E.

1.4.7. Definition (c-telescope). A c-telescope in \mathcal{D} is a lax c-telescope E in \mathcal{D} such that the map $\sigma_d^\# : U_nE \to U_{n+1}E^c$ is an equivalence for every $n \geq 0$. Let $\text{Tel}_c(\mathcal{D})$ denote the full subcategory of $\text{Tel}_c^{\text{lax}}(\mathcal{D})$ spanned by c-telescopes.

1.4.8. Lemma. The ∞-category $\text{Tel}_c(\mathcal{D})$ is an accessible localization of $\text{Tel}_c^{\text{lax}}(\mathcal{D})$ with respect to all the maps $\sigma_d : s_+(c \otimes G_c(d)) \to s_nG_c(d)$ for $d \in \mathcal{D}$ and $n \geq 0$.

Proof. It is proved in the same way as Lemma 1.3.9.

1.4.9. Remark. Let L denote the localization $\text{Tel}_c^{\text{lax}}(\mathcal{D}) \to \text{Tel}_c(\mathcal{D})$. Then $\text{Tel}_c(\mathcal{D})$ is presentably tensored over \mathcal{D}_c^N in a unique way so that L is \mathcal{D}_c^N-linear.

1.4.10 (Adjunction). The adjunctions in 1.4.4 derive the following adjunctions:

$$L_G : \mathcal{D} \rightleftarrows \text{Tel}_c(\mathcal{D}) : U \quad Ls_+ : \text{Tel}_c(\mathcal{D}) \rightleftarrows \text{Tel}_c(\mathcal{D}) : s_-.$$

Then L_G is \mathcal{D}_c-linear and Ls_+ is \mathcal{D}_c^N-linear.

1.4.11. Lemma. There is a natural \mathcal{D}_c-linear equivalence

$$\text{Tel}_c(\mathcal{D}) \simeq \text{colim}(\mathcal{D} \xrightarrow{c^B} \mathcal{D} \xrightarrow{c^B} \mathcal{D} \xrightarrow{c^B} \cdots),$$

where the colimit is taken in $\text{Mod}_{\mathcal{D}}(\Pr^L)$.

Proof. By Lemma 1.4.3, it suffices to show that a lax c-telescope E is a c-spectrum if and only if the corresponding section $E : N \to \mathcal{E}$ is cartesian, but this is straightforward to check.

1.4.12. Corollary. The adjunction

$$Ls_+ : \text{Tel}_c(\mathcal{D}) \rightleftarrows \text{Tel}_c(\mathcal{D}) : s_-$$

is an adjoint equivalence.
Proof. Let $X : \mathbb{N} \to \text{Pr}^I$ denote the diagram $\mathcal{D} \xrightarrow{id} \mathcal{D} \xrightarrow{c_{0}} \cdots$. Since the functor $+1 : \mathbb{N} \to \mathbb{N}$ is cofinal, it induces an equivalence $\text{colim} X \xrightarrow{\sim} \text{colim} (X \circ (+1))$, but this functor is identified with $s_{_}$ under the equivalence in Lemma 1.4.11. □

1.5. Formal properties of spectra and telescopes.

1.5.1. Lemma. There are natural \mathcal{C}-linear equivalences

$$\text{Sp}_{c}(\mathcal{D}) \simeq \text{Sp}_{c}(\mathcal{C}) \otimes_{c} \mathcal{D} \quad \text{Tel}_{c}(\mathcal{D}) \simeq \text{Tel}_{c}(\mathcal{C}) \otimes_{c} \mathcal{D},$$

for every ∞-category \mathcal{D} presentably tensored over \mathcal{C}, where the tensor products are taken in $\text{Mod}_{\mathcal{C}}(\text{Pr}^{I})$.

Proof. For spectra, it follows from Proposition 1.3.13; formal inversion is compatible with tensor products. For telescopes, it follows from Lemma 1.4.11; colimit in Pr^{I} is compatible with tensor products. □

1.5.2. Lemma. Let \mathcal{D} be an ∞-category presentably tensored over \mathcal{C}. Then $\text{Sp}_{c}(\mathcal{D})$ is generated under colimits by objects of the form $L_{s}^{n} F_{c}(d)$ for $d \in \mathcal{D}$ and $n \geq 0$.

Proof. Since $\text{Sp}_{c}(\mathcal{D})$ is a localization of $\text{Sp}_{c}^{\text{lax}}(\mathcal{D})$, we are reduced to showing that $\text{Sp}_{c}^{\text{lax}}(\mathcal{D})$ is generated under colimits by objects of the form $s_{i}^{n} F_{c}(d)$ for $d \in \mathcal{D}$ and $n \geq 0$. Since $\text{Sp}_{c}^{\text{lax}}(\mathcal{D}) = \text{Mod}_{\mathcal{C}}(\mathcal{D}^{\mathcal{C}})$ is generated under colimits by free $S_{_}$-modules (cf. the proof of [Lur17b, 5.3.2.12]), we are reduced to showing that $\mathcal{D}^{\mathcal{C}}$ is generated under colimits by $F_{c}(d)$ for $d \in \mathcal{D}$ and $n \geq 0$. This is true by the same reason, that is, modules are generated under colimits by free modules. □

1.5.3. Lemma. Let \mathcal{D} be an ∞-category presentably tensored over \mathcal{C}. Assume that c is compact in \mathcal{D}, i.e., $(-)^{c} : \mathcal{D} \to \mathcal{D}$ preserves filtered colimits. Then the functor $U_{0} : \text{Sp}_{c}(\mathcal{D}) \to \mathcal{D}$ preserves filtered colimits.

Proof. Since $U_{0} : \text{Sp}_{c}^{\text{lax}}(\mathcal{D}) \to \mathcal{D}$ preserves filtered colimits (in fact all small colimits), it suffices to show that the forgetful functor $\text{Sp}_{c}(\mathcal{D}) \to \text{Sp}_{c}^{\text{lax}}(\mathcal{D})$ preserves filtered colimits. We have to show that, if $\{E_{i}\}$ is a filtered family of c-spectra in \mathcal{D}, then the colimit $E := \text{colim} E_{i}$ taken in $\text{Sp}_{c}^{\text{lax}}(\mathcal{D})$ is a c-spectrum, i.e., $E \to (s_{_}E)^{c}$ is an equivalence. This is true since $s_{_}$ and $(-)^{c}$ preserve filtered colimits. □

1.5.4. Corollary. Let \mathcal{D} be an ∞-category presentably tensored over \mathcal{C}. Assume that \mathcal{D} is compactly generated and that c is compact in \mathcal{D}. Then $\text{Sp}_{c}(\mathcal{D})$ is compactly generated.

Proof. By Lemma 1.5.2, it suffices to show that $LF_{c} : \mathcal{D} \to \text{Sp}_{c}(\mathcal{D})$ preserves compact objects, which formally follows from Lemma 1.5.3. □

1.5.5. Lemma. Let $L : \mathcal{D} \to \mathcal{D}'$ be a \mathcal{C}-linear localization between ∞-categories presentably tensored over \mathcal{C}. Then the induced functor $\text{Sp}_{c}(\mathcal{D}) \to \text{Sp}_{c}(\mathcal{D}')$ is an $\text{Sp}_{c}(\mathcal{C})$-linear localization with respect to all the maps of the form $L_{s}^{n} LF_{c}(f)$ for an L-equivalence f and $n \geq 0$.

Proof. By Lemma 1.5.1 and Lemma 1.5.2, we only have to show that the induced functor

$$L \otimes \text{id} : \mathcal{D} \otimes_{\mathcal{C}} \text{Sp}_{c}(\mathcal{C}) \to \mathcal{D}' \otimes_{\mathcal{C}} \text{Sp}_{c}(\mathcal{C})$$

is a localization with respect to morphisms of the form $f \otimes E$ for some L-equivalence f in \mathcal{D} and $E \in \text{Sp}_{c}(\mathcal{C})$. This holds formally, cf. the proof of [Lur17b, 4.8.1.15]. □

1.5.6. Remark. Lemma 1.5.2, Lemma 1.5.3, Corollary 1.5.4, and Lemma 1.5.5 have evident analogues for telescopes, which are proved in the same way.
1.6. Comparison of spectra and telescopes.

1.6.1. Construction. Let $\bar{F}: (-)^N \to (-)^E$ be the natural transformation between endofunctors on Pr^t obtained as the left Kan extension along the canonical morphism $N \to B\Sigma_N$ of E_1-monoids. Then $\bar{F}: \mathcal{E}^N \to \mathcal{E}^E$ is monoidal and $\bar{F}: \mathcal{D}^N \to \mathcal{D}^E$ is \mathcal{E}^N-linear for an ∞-category \mathcal{D} presentably tensored over \mathcal{E}. We consider the adjunction

$$\bar{F}: \mathcal{D}^N \rightleftarrows \mathcal{D}: \bar{U},$$

where \bar{U} is the pre-composition by $N! : B\Sigma_N$. Note that \bar{F} commutes with s_+ and \bar{U} commutes with $s_-.

Since the functor $\bar{U}: \mathcal{E}^E \to \mathcal{E}^N$ is lax monoidal, it carries E_1-algebras to E_1-algebras. In particular, $\bar{U}(S_c)$ is an E_1-algebra and it is identified with S_c in \mathcal{E}^N. It follows that we obtain an induced adjunction

$$\bar{F}_c := S_c \otimes \bar{F}(S_c) : \text{Tel}^\text{lax}(\mathcal{D}) \rightleftarrows \text{Sp}^\text{lax}(\mathcal{D}): \tilde{U},$$

and \bar{F}_c is \mathcal{E}^N-linear. We see that a lax c-spectrum E is a c-spectrum if and only if $\tilde{U}(E)$ is a c-telescope. Therefore, we obtain an induced adjunction

$$L\bar{F}_c : \text{Tel}_c(\mathcal{D}) \rightleftarrows \text{Sp}_c(\mathcal{D}): \tilde{U},$$

and $L\bar{F}_c$ is \mathcal{E}^N-linear.

1.6.2. Lemma. The functor $\tilde{U}: \text{Sp}_c(\mathcal{D}) \to \text{Tel}_c(\mathcal{D})$ is conservative.

Proof. It follows from the conservativity of $\{U_n : \text{Sp}_c(\mathcal{D}) \to \mathcal{D}\}_{n \geq 0}$, cf. Lemma 1.3.6. □

1.6.3. Proposition. Assume that the cyclic permutation on $c^{\otimes 3}$ is homotopic to the identity. Then the functor

$$\tilde{U}: \text{Sp}_c(\mathcal{D}) \to \text{Tel}_c(\mathcal{D})$$

is an equivalence for every ∞-category \mathcal{D} presentably tensored over \mathcal{E}.

Proof. It suffices to show that $\text{Tel}_c(\mathcal{D})$ has the same universal property with $\text{Sp}_c(\mathcal{D})$, that is:

(i) c acts as an equivalence on $\text{Tel}_c(\mathcal{D})$.

(ii) If c acts as an equivalence on \mathcal{D}, then $LF_c : \mathcal{D} \to \text{Tel}_c(\mathcal{D})$ is an equivalence.

(i) follows from Lemma 1.4.11 and [BNT18, Proposition C.3] thanks to the cyclic triviality. (ii) is immediate from Lemma 1.4.11. □
2. Motivic spectra and fundamental stability

Recall that the ∞-category Sp of spectra is the formal inversion of S^1 in Ani, and, more generally, that the stabilization $\text{Sp}(\mathcal{C})$ of a presentable ∞-category \mathcal{C} is the formal inversion of S^1 in \mathcal{C}. We develop the theory of motivic spectra in parallel, replacing the ∞-topos Ani with the ∞-topos St of Zariski sheaves on smooth schemes and S^1 with the projective line \mathbb{P}^1.

We define the ∞-category $\text{Sp}_{\mathbb{P}^1}$ of motivic spectra to be the ∞-category of \mathbb{P}^1-spectra in St, in the sense of Definition 1.3.8, or equivalently the formal inversion of \mathbb{P}^1 in St:

$$\text{Sp}_{\mathbb{P}^1} := \text{Sp}_{\text{St}}(\text{St}) \simeq \text{St}_{[(\mathbb{P}^1)^{-1}]}.$$

More generally, for an ∞-category \mathcal{V} presentably tensored over St, the ∞-category $\text{Sp}_{\mathcal{V}}(\mathcal{V})$ of motivic spectra in \mathcal{V} is well-defined. The basic issue is that it is not clear if the ∞-category $\text{Sp}_{\mathcal{V}}(\mathcal{V})$ is stable. We define the notion of fundamental motivic spectra and establish a stability for them (Theorem 2.4.5). Roughly speaking, a motivic spectrum is fundamental if and only if it satisfies Bass fundamental exact sequence, and then we employ the idea of Bass construction to prove the stability.

2.1. Algebro-geometric conventions. We refer to [Lur18] for the theory of derived schemes.

2.1.1. For a derived qcqs scheme S, let Sm_S denote the ∞-category of qcqs smooth derived S-schemes. We suppose that Sm_S is endowed with the Zariski topology by default. In the case $S = \text{Spec}(\mathbb{Z})$, the prefix/subscript S is omitted from the notation, and the same applies below.

2.1.2 (Stack). We refer to a sheaf of anima on Sm_S as an S-stack. Let St_S denote the ∞-topos of sheaves of anima on Sm_S. We endow St_S with the cartesian symmetric monoidal structure. Then St_S is a presentably symmetric monoidal ∞-category.

2.1.3 (Projective line). We suppose that the projective line \mathbb{P}^1 is pointed by ∞. We write

$$\Sigma_{\mathbb{P}^1} := \mathbb{P}^1 \otimes \mathbb{P}^1, \quad \Omega_{\mathbb{P}^1} := (-)^{\mathbb{P}^1},$$

for the operations on ∞-categories presentably tensored over St_S.

2.1.4 (Moduli stack of vector bundles). For a non-negative integer n, let Vect_n denote the moduli stack of vector bundles of rank n, which yields an S-stack for each qcqs derived scheme S. Since the moduli stack Vect_n is left Kan extended from smooth schemes, the base change functor $\text{St} \to \text{St}_S$ carries Vect_n to Vect_n. For $n = 1$, we write $\text{Pic} := \text{Vect}_1$, which is the Picard stack. We often regard Pic as an E_∞-monoid in St_S with respect to tensor products of line bundles.

2.1.5 (Grassmannian). For non-negative integers n and N, the n-th grassmannian $\text{Gr}_n(\mathcal{O}^N)$ of \mathcal{O}^N classifies all quotients $\mathcal{O}^N \to \mathcal{E}$, where \mathcal{E} is a vector bundle of rank n. The projection $\mathcal{O}^{N+1} \to \mathcal{O}^N$ discarding the last factor induces an immersion $\text{Gr}_n(\mathcal{O}^{N+1}) \to \text{Gr}_n(\mathcal{O}^N)$. We write $\text{Gr}_n := \text{colim}_n \text{Gr}_n(\mathcal{O}^N)$ and regard it as an ind-scheme or stack. We write $\mathbb{P}^{\infty} := \text{Gr}_1$, which is the infinite projective space.

2.2. Definition of motivic spectra

2.2.1. Let \mathcal{V} be an ∞-category presentably tensored over St throughout. We assume that \mathcal{V} is compactly generated and that \mathbb{P}^1 is compact in \mathcal{V}, i.e., $(-)^{\mathbb{P}^1} : \mathcal{V} \to \mathcal{V}$ preserves filtered colimits. We say that \mathcal{V} is multiplicative if \mathcal{V} is a presentably symmetric monoidal ∞-category together with a symmetric monoidal left adjoint $\text{St} \to \mathcal{V}$, which we denote by $(-)^{\mathbb{P}^1}$. For a qcqs derived scheme S, we say that \mathcal{V} is defined over S if \mathcal{V} is presentably tensored over St_S.

2.2.2. Remark. The assumption that \mathcal{V} is compactly generated and that \mathbb{P}^1 is compact is required only for the validity of Brown representability theorem, which we use only in the proof of Theorem 2.4.5. We can remove those assumptions unless Theorem 2.4.5 is involved.
2.2.3. Definition (Motivic spectrum). We define a *motivic spectrum in* \(\mathcal{V} \) to be a \(\mathbb{P}^1 \)-spectrum in \(\mathcal{V}_s \) in the sense of Definition 1.3.8. Accordingly, the presentably symmetric monoidal \(\infty \)-category

\[
\text{Sp}_{p_1} := \text{Sp}_{p_1}(\text{St}_s)
\]

is defined and \(\text{Sp}_{p_1}(\mathcal{V}) := \text{Sp}_{p_1}(\mathcal{V}_s) \) is defined as an \(\infty \)-category presentably tensored over \(\text{Sp}_{p_1} \).

2.2.4. Remark. By Proposition 1.3.13, we have canonical equivalences

\[
\text{Sp}_{p_1}(\mathcal{V}) \simeq \text{Sp}_{p_1} \otimes_{\text{St}} \mathcal{V} \simeq \mathcal{V}_s[(\mathbb{P}^1)^{-1}],
\]

where the tensor product is taken in \(\text{Mod}_{\text{St}}(\text{Pr}^1) \). Moreover, \(\text{Sp}_{p_1}(\mathcal{V}) \) is compactly generated by Corollary 1.5.4.

2.2.5. Remark. Suppose that \(\mathcal{V} \) is multiplicative. Then \(\text{Sp}_{p_1}(\mathcal{V}) \) admits a unique presentably symmetric monoidal structure for which the evident functors \(\mathcal{V} \to \text{Sp}_{p_1}(\mathcal{V}) \) and \(\text{Sp}_{p_1} \to \text{Sp}_{p_1}(\mathcal{V}) \) are symmetric monoidal. In this case, we refer to a homotopy associative (co)algebra object in \(\text{Sp}_{p_1}(\mathcal{V}) \) as a *motivic (co)ring spectrum* in \(\mathcal{V} \) and refer to an \(\mathbb{E}_k \)-algebra object as a *motivic \(\mathbb{E}_k \)-(co)ring spectrum* in \(\mathcal{V} \).

2.2.6. Example. For a qcqs derived \(S \)-scheme, we can take \(\text{St}_s \) as \(\mathcal{V} \). Then it is multiplicative and the presentably symmetric monoidal \(\infty \)-category

\[
\text{Sp}_{p_1}(S) := \text{Sp}_{p_1}(\text{St}_s)
\]

is defined. We refer to a motivic spectrum in \(\text{St}_s \) as a *motivic spectrum over* \(S \). In general, if \(\mathcal{V} \) is defined over \(S \), then \(\text{Sp}_{p_1}(\mathcal{V}) \) is presentably tensored over \(\text{Sp}_{p_1}(S) \).

2.2.7. Notation (Infinite suspension). We write

\[
\Sigma^\infty_{p_1} : \mathcal{V} \leftrightarrow \text{Sp}_{p_1}(\mathcal{V}) : \Omega^\infty_{p_1} \quad \text{and} \quad s_+ : \text{Sp}_{p_1}(\mathcal{V}) \leftrightarrow \text{Sp}_{p_1}(\mathcal{V}) : s_-
\]

for the adjunctions in 1.3.11 (\(s_+ \) denotes the derived sift \(Ls_+ \) for simplicity). For each integer \(n \), we set

\[
\Sigma^\infty_{p_1} - n := (s_+)^{\text{en}} \circ \Sigma^\infty_{p_1} \quad \Omega^\infty_{p_1} - n := \Omega^\infty_{p_1} \circ (s_-)^{\text{en}}.
\]

Note that we have natural equivalences \(\Sigma^\infty_{p_1} \simeq s_- \) and \(\Omega^\infty_{p_1} \simeq s_+ \) as endofunctors on \(\text{Sp}_{p_1}(\mathcal{V}) \), cf. Lemma 1.3.12.

2.2.8. Notation (Cohomology). Let \(E, R \) be motivic spectra in \(\mathcal{V} \) and \(p, q, n \) integers with \(2q - p \geq 0 \). We write

\[
E(R) := \text{Map}(R, E) \quad E^p(R) := \pi_{2q-p} \text{Map}(R, \Sigma^q_{p_1} E) \quad E^n(R) := E^{2n,n}(R).
\]

For an object \(X \) in \(\mathcal{V} \), we write \(E(X) := E(\Sigma^\infty_{p_1} X) \), and when \(X \) is pointed, \(\tilde{E}(X) := E(\Sigma^\infty_{p_1} X) \).

2.2.9. Remark. Let \(E \) be a motivic spectrum in \(\mathcal{V} \). By definition, we have an isomorphism

\[
E^p(R) \otimes \mathbb{P}^1 \simeq E^{p-2q-1}(R)
\]

for every motivic spectrum \(R \) in \(\mathcal{V} \) and for integers \(p, q \) with \(2q - p \geq 0 \). This can be referred to as the \(\mathbb{P}^1 \)-suspension isomorphism.

2.2.10 (Change of coefficients). Let \(F : \mathcal{V} \to \mathcal{V}' \) be an \(\text{St} \)-linear left adjoint between \(\infty \)-categories presentably tensored over \(\text{St} \). Then we have an induced adjunction

\[
F^* : \text{Sp}_{p_1}(\mathcal{V}) \leftrightarrow \text{Sp}_{p_1}(\mathcal{V}') : F_*,
\]

and \(F^* \) is \(\text{Sp}_{p_1} \)-linear. If \(\mathcal{V} \) and \(\mathcal{V}' \) are multiplicative and \(F : \mathcal{V} \to \mathcal{V}' \) is symmetric monoidal, then the induced left adjoint \(F^* : \text{Sp}_{p_1}(\mathcal{V}) \to \text{Sp}_{p_1}(\mathcal{V}') \) is symmetric monoidal.
2.2.11 (Relation to A^1-local theory). Let S be a qcqs derived scheme S. Let $S^\text{Nis,}A^1$ be the full subcategory of St_S spanned by A^1-local Nisnevich sheaves. Then Voevodsky’s stable motivic homotopy category $\text{SH}(S)$ is defined as

$$\text{SH}(S) = \text{Sp}_{\text{P}^1}(S^\text{Nis,A}^1).$$

In particular, it is a localization of $\text{Sp}_{\text{P}^1}(S)$ with respect to Nisnevich descent and A^1-homotopy invariance.

2.3. **Fundamental motivic spectra.**

2.3.1. Consider the standard Zariski distinguished square

$$\begin{array}{ccc}
\mathbb{G}_m & \longrightarrow & A^1 \\
\downarrow & & \downarrow \\
A^1 & \longrightarrow & \text{P}^1,
\end{array}$$

which we regard as a square of pointed schemes, and let $\partial : \text{P}^1 \to S^1 \otimes \mathbb{G}_m$ denote the boundary map in St_S (note that $S^1 \otimes \mathbb{G}_m \simeq \ast \cup \mathbb{G}_m$).

2.3.2. **Definition (Fundamental motivic spectrum).** We say that a motivic spectrum E in \mathcal{V} is fundamental if the map

$$\partial = \partial \otimes \text{id}_E : \text{P}^1 \otimes E \to S^1 \otimes \mathbb{G}_m \otimes E$$

admits a left inverse.

2.3.3. **Lemma.** Let E be a motivic spectrum in \mathcal{V}. Then the following are equivalent:

(i) E is fundamental.

(ii) There exists an element $\nu \in E^{1,1}(\mathbb{G}_m \otimes E)$ which lifts the identity $\text{id}_E \in E^0(E)$ via the map

$$E^{1,1}(\mathbb{G}_m \otimes E) \xrightarrow{\partial^*} E^{2,1}(\text{P}^1 \otimes E) \simeq E^0(E).$$

(iii) The map $\partial^* : E^{0,\mathbb{G}_m} \to E^{\text{P}^1}$ admits a right inverse.

(iv) The motivic spectrum $\text{Map}(E, E)$ over $\text{Spec}(\mathbb{Z})$ is fundamental.

Suppose that \mathcal{V} is multiplicative and that E is a motivic ring spectrum in \mathcal{V}, then these are further equivalent to the following:

(v) The map $\partial : \text{P}^1 \otimes E \to S^1 \otimes \mathbb{G}_m \otimes E$ admits a left inverse as a morphism of left (or right) E-modules.

(vi) There exists an element $\nu \in \tilde{E}^{1,1}(\mathbb{G}_m, \nu)$ which lifts the unit $\eta \in E^0(1, \nu)$ via the map

$$\tilde{E}^{1,1}(\mathbb{G}_m, \nu) \xrightarrow{\partial^*} \tilde{E}^{2,1}(\text{P}^1, \nu) \simeq E^0(1, \nu).$$

Proof. By definition, we have

$$\pi_0 \text{Map}(S^1 \otimes \mathbb{G}_m \otimes E, \text{P}^1 \otimes E) = E^{1,1}(\mathbb{G}_m \otimes E)$$

and this identification furnishes a one-to-one correspondence between left inverses of ∂ and lifts of the identity $\text{id}_E \in E^0(E)$. This proves (i) \iff (ii). Next note that we have equivalences

$$\text{Map}(S^1 \otimes \mathbb{G}_m \otimes E, \text{P}^1 \otimes E) \simeq \text{Map}(E, s_+ E^{S^1 \otimes \mathbb{G}_m})$$

$$\simeq \text{Map}(s_+ E, E^{S^1 \otimes \mathbb{G}_m})$$

$$\simeq \text{Map}(E^{\text{P}^1}, E^{S^1 \otimes \mathbb{G}_m}).$$

This equivalence furnishes a one-to-one correspondence between left inverses of ∂ and right inverses of ∂^*. This proves (i) \iff (iii).
Note that $F := \text{Map}(E, E)$ is a motivic ring spectrum over $\text{Spec}(\mathbb{Z})$ in a canonical way. Then the condition (vi) for F is identified with the condition (ii) for E. Assuming (i)\iff(vi) for the moment, we see that E is fundamental if and only if F is fundamental, i.e., (i)\iff(iv).

Suppose that \mathcal{V} is multiplicative and that E is a motivic ring spectrum in \mathcal{V}. Then the implications (v)\implies(i) and (iii)\implies(vi) are obvious, and thus it remains to show that (vi)\implies(v). Suppose that we are given a lift $v \in E_{1, 1}(\mathbb{G}_m, \mathcal{V})$ as in (v). Then v is regarded as a map $\Sigma_{\mathcal{V}}^{\infty}(S^1 \otimes \mathbb{G}_m) \to \mathbb{P}^1 \otimes E$. By taking the adjunction, we obtain a morphism $S^1 \otimes \mathbb{G}_m \otimes E \to \mathbb{P}^1 \otimes E$ of left (or right) E-modules, and it gives a left inverse of the canonical map ∂. This completes the proof.

2.3.4. Corollary. Suppose that \mathcal{V} is multiplicative. Let E be a fundamental motivic ring spectrum in \mathcal{V}. Then every left or right E-module in $\text{Sp}_{\mathcal{V}}(\mathcal{V})$ is fundamental.

Proof. This is immediate from the condition (v) in Lemma 2.3.3 for E. \hfill \Box

2.3.5. Corollary. Let $F: \mathcal{V} \to \mathcal{V}'$ be an \mathbb{E}_1-linear left adjoint between ∞-categories presentably tensored over St. Then the induced functors

$$F^*: \text{Sp}_{\mathcal{V}}(\mathcal{V}) \to \text{Sp}_{\mathcal{V}'}(\mathcal{V}') \quad F_*: \text{Sp}_{\mathcal{V}'}(\mathcal{V}') \to \text{Sp}_{\mathcal{V}}(\mathcal{V})$$

preserve fundamental motivic spectra.

Proof. Note that F^* preserves fundamental motivic spectra by definition and that F_* preserves the condition (iii) in Lemma 2.3.3. \hfill \Box

2.3.6 (Fundamental exact sequence). Let E be a fundamental motivic spectrum in \mathcal{V}. Then, by Lemma 2.3.3, we have a split exact sequence

$$0 \to E^{p+1, q+1}(\mathbb{A}^1 \otimes R)^{\Sigma_2} \to E^{p+1, q+1}(\mathbb{G}_m \otimes R) \xrightarrow{\partial} E^{p,q}(R) \to 0$$

for every motivic spectrum R in \mathcal{V} and for integers p, q with $2q - p \geq 0$. We refer to this sequence as the \textit{fundamental exact sequence}. Warn that a priori this is an exact sequence of pointed sets when $2q - p = 0$. However, the next lemma says that this is canonically promoted to an exact sequence of abelian groups.

2.3.7. Lemma. Let E be a fundamental motivic spectrum in \mathcal{V}, R a motivic spectrum in \mathcal{V}, and q a non-negative integer. Then $E^{2q-1, q}(R)$ is an abelian group and $E^{2q, q}(R)$ admits a natural abelian group structure which makes the fundamental exact sequence an exact sequence of abelian groups.

Proof. By definition, $E^{p,q}(R)$ is a group for $2q - p \geq 1$ and abelian for $2q - p \geq 2$. The fundamental exact sequence implies that $E^{p,q}(R)$ is abelian for $2q - p = 1$ as well. In general, if we have a cartesian square

$$\begin{array}{ccc}
A & \to & B \\
\downarrow & & \downarrow f \\
C & \to & D
\end{array}$$

of pointed anima, then we have an exact sequence

$$\pi_1(B) \times \pi_1(C) \xrightarrow{f \times g} \pi_1(D) \xrightarrow{\partial} \pi_0(A).$$

Moreover, if $x, y \in \pi_1(D)$ with $\partial x = \partial y$, then there exist $\beta \in B$ and $\gamma \in C$ such that $f(\beta) \cdot x = y \cdot g(\gamma)$. We apply this observation to the fundamental exact sequence. Then we see that $E^{2q-1, q}(R)$ inherits an abelian group structure from $E^{2q-1, q}(\mathbb{G}_m \otimes R)$. \hfill \Box
2.4. Fundamental stability.

2.4.1. Construction. Let E be a fundamental motivic spectrum in \mathcal{V} and R a motivic spectrum in \mathcal{V}. We define abelian groups $E_{p,q}(R)$ for all integers p, q as follows: For $2q - p \geq 0$, it is as defined in Notation 2.2.8 and Lemma 2.3.7 and, for $2q - p < 0$, it is defined by induction by the formula

$$E_{p,q}(R) := \text{coker}(E^{p+1,q+1}(\mathbb{A}^1_\mathbb{R} \otimes R)^{q2} \to E^{p+1,q+1}(G_m \otimes R)).$$

For $2q - p \geq 1$, we have a natural isomorphism

$$\delta : E^{p,q}(R) \simto E^{p+1,q}(\mathcal{V})$$

and we extend it to all integers p, q by induction by the commutative diagram

$$\begin{array}{ccc}
E^{p+1,q+1}(\mathbb{A}^1_\mathbb{R} \otimes R)^{q2} & \cong & E^{p+1,q+1}(G_m \otimes R) \\
\downarrow & & \downarrow \\
E^{p+2,q+2}(G_m \otimes \mathbb{A}^1_\mathbb{R} \otimes R)^{q2} & \cong & E^{p+2,q+2}(G_m \otimes G_m \otimes R) \\
\cong & & \cong \\
& & \\
\end{array}$$

Note that this construction is natural in R.

2.4.2. Lemma. Let E be a fundamental motivic spectrum in \mathcal{V} and R a motivic spectrum in \mathcal{V}. Then the exact sequence

$$0 \to E^{p+1,q+1}(\mathbb{A}^1_\mathbb{R} \otimes R)^{q2} \to E^{p+1,q+1}(G_m \otimes R) \to E^{p,q}(R) \to 0$$

is naturally split for all integers p, q.

Proof. Choose a right inverse v of the canonical map $\delta^* : E^{p+1,q+1}(\mathbb{A}^1_\mathbb{R} \otimes R)^{q2} \to E^{p,q}(R)$. Then it induces a split

$$v : E^{p,q}(R) \to E^{p+1,q+1}(G_m \otimes R)$$

for $2q - p \geq 0$, which is natural in R, and we extend it to all integers p, q by induction by the commutative diagram

$$\begin{array}{ccc}
E^{p+1,q+1}(\mathbb{A}^1_\mathbb{R} \otimes R)^{q2} & \xrightarrow{\gamma} & E^{p+1,q+1}(G_m \otimes R) \\
\downarrow & & \downarrow \\
E^{p+2,q+2}(G_m \otimes \mathbb{A}^1_\mathbb{R} \otimes R)^{q2} & \xrightarrow{\gamma} & E^{p+2,q+2}(G_m \otimes G_m \otimes R) \\
\cong & & \cong \\
& & \\
\end{array}$$

Then it gives a desired split.

2.4.3. Lemma. Let E be a fundamental motivic spectrum in \mathcal{V}. Then, for each integer q, the family of functors $\{E_{p,q} : \text{Sp}_{\mathbb{Z}}(\mathcal{V})^p \to \text{Ab}\}$, together with isomorphisms $\delta : E_{p,q} \simto E^{p+1,q} \circ \Sigma$, is a cohomology theory on $\text{Sp}_{\mathbb{Z}}(\mathcal{V})$ in the sense of [Lur17b, 1.4.1.6].

Proof. We have to verify the following two properties:

(i) $E_{p,q}$ preserves products.

(ii) For a cofiber sequence $A \to B \to C$ in $\text{Sp}_{\mathbb{Z}}(\mathcal{V})$, the induced sequence

$$E_{p,q}(C) \to E_{p,q}(B) \to E_{p,q}(A)$$

is exact.

This is clear for $2q - p \geq 0$, and the general case follows by induction by the split exact sequence in Lemma 2.4.2. We remark that the splitting is important here; otherwise the induction step may not work.

2.4.4. Notation. Let $\text{Sp}_{\text{fd}}(\mathcal{V})^\text{id}$ denote the full subcategory of $\text{Sp}_{\mathbb{Z}}(\mathcal{V})$ spanned by fundamental motivic spectra in \mathcal{V}. Note that $\text{Sp}_{\text{fd}}(\text{Sp}(\mathcal{V}))^\text{id}$ makes sense by replacing \mathcal{V} by its stabilization $\text{Sp}(\mathcal{V})$.
2.4.5. Theorem. The adjunction

\[\Sigma^\infty : \text{Sp}_{p_\ast}(\mathcal{Y}) \to \text{Sp}_{p_\ast}(\text{Sp}(\mathcal{Y})): \Omega^\infty \]

restricts to an adjoint equivalence

\[\Sigma^\infty : \text{Sp}_{p_\ast}(\mathcal{Y})^{\text{fd}} \rightleftarrows \text{Sp}_{p_\ast}(\text{Sp}(\mathcal{Y}))^{\text{fd}} : \Omega^\infty. \]

Proof. We first prove that the functor

\[\Omega^{\text{fd}} := \Omega_{\text{Sp}_{p_\ast}(\mathcal{Y})^{\text{op}}} : \text{Sp}_{p_\ast}(\mathcal{Y})^{\text{fd}} \to \text{Sp}_{p_\ast}(\mathcal{Y})^{\text{fd}} \]

is an equivalence. Note that \(\Omega^{\text{fd}} \) is an equivalence if and only if it induces an equivalence on homotopy categories. It follows from Lemma 2.4.3 and the Brown representability ([Lur17b, 1.4.1.10]) that, for each fundamental motivic spectrum \(E \) in \(\mathcal{Y} \), the functor \(E^{1,0} : \text{Sp}_{p_\ast}(\mathcal{Y})^{\text{op}} \to \text{Ab} \) is representable. We claim that the assignment \(E \mapsto E^{1,0} \) gives a homotopy inverse of \(\Omega^{\text{fd}} \). Let us first verify that \(F := E^{1,0} \) is fundamental. For this, note that we have a commutative diagram

\[
\begin{array}{ccc}
E^{p+2q+1}(A^1 \otimes \mathbb{P}^1 \otimes R)^{\mathbb{Q}2} & \xrightarrow{\nu} & E^{p+2q+1}(G_m \otimes \mathbb{P}^1 \otimes R) \\
| & & | \\
E^{p+1}(A^1 \otimes G_m \otimes R)^{\mathbb{Q}2} & \xrightarrow{\nu} & E^{p+1}(G_m \otimes G_m \otimes R) \\
| & & | \\
E^{1}(A^1 \otimes R)^{\mathbb{Q}2} & \xrightarrow{\nu} & E^{1}(G_m \otimes R) \to 0
\end{array}
\]

for integers \(p, q \) with \(2q - p \geq 0 \), where \(\nu \) is a natural right inverse supplied by the fundamentality of \(E \). Hence, we obtain a right inverse \(\nu : E^p \to F^{s^1 \otimes G_m} \), which shows that \(F \) is fundamental. The assignment \(E \mapsto E^{1,0} \) is clearly a right inverse of \(\Omega^{\text{fd}} \). To show that it is a left inverse, we have to show that there is a natural equivalence (\(\Omega E^{1,0} \simeq E \)) for a fundamental motivic spectrum \(E \), and this follows from the commutative diagram

\[
\begin{array}{ccc}
(\Omega E)^{2,1}(A^1 \otimes R)^{\mathbb{Q}2} & \xrightarrow{\nu} & (\Omega E)^{2,1}(G_m \otimes R) \\
| & & | \\
E^{1,1}(A^1 \otimes R)^{\mathbb{Q}2} & \xrightarrow{\nu} & E^{1,1}(G_m \otimes R) \to 0,
\end{array}
\]

where each row is exact and every map is natural in \(R \).

Next we show that the canonical functor

\[\text{Sp}_{p_\ast}(\text{Sp}(\mathcal{Y}))^{\text{fd}} \to \lim(\cdots \to \text{Sp}_{p_\ast}(\mathcal{Y})^{\text{fd}} \to \text{Sp}_{p_\ast}(\mathcal{Y})^{\text{fd}} \to \text{Sp}_{p_\ast}(\mathcal{Y})^{\text{fd}}). \]

is an equivalence. In other words, a motivic spectrum \(E \) in \(\text{Sp}(\mathcal{Y}) \) is fundamental if and only if \(\Omega^{\infty-i}E \) is fundamental for every \(i \) as a motivic spectrum in \(\mathcal{Y} \). The “only if” part is obvious. To show the “if” part, suppose we are given a motivic spectrum \(E \) in \(\text{Sp}(\mathcal{Y}) \) such that \(E^{(i)} := \Omega^{\infty-i}E \) is fundamental for every \(i \).

We have seen that \(E^{(i)} \simeq (E^{(0)})^{s^i} \) for each \(i \) and that a right inverse \(\nu_0 : (E^{(0)})^{s^1} \to (E^{(0)})^{s^1 \otimes G_m} \) induces a right inverse \(\nu_i : (E^{(i)})^{s^1} \to (E^{(i)})^{s^1 \otimes G_m} \). Then we have \(\Omega \nu_i = \nu_{i-1} \) for each \(i \geq 1 \). Therefore, we obtain a morphism

\[\nu : E^{s^1} \to E^{s^1 \otimes G_m} \]

in \(\text{Sp}(\text{Sp}_{p_\ast}(\mathcal{Y})) \simeq \text{Sp}_{p_\ast}(\text{Sp}(\mathcal{Y})) \) such that \(\partial^s \circ \nu \) is an equivalence. By replacing \(\nu \) if necessary, we conclude that \(E \) is a fundamental motivic spectrum in \(\text{Sp}(\mathcal{Y}) \).

By Corollary 2.3.5, the adjunction \((\Sigma^{\infty}, \Omega^{\infty}) \) induces an adjunction

\[\Sigma^{\infty} : \text{Sp}_{p_\ast}(\mathcal{Y})^{\text{fd}} \rightleftarrows \text{Sp}_{p_\ast}(\text{Sp}(\mathcal{Y}))^{\text{fd}} : \Omega^{\infty}. \]

The above argument proves that the right adjoint \(\Omega^{\infty} \) is an equivalence, and therefore we obtain a desired adjoint equivalence. \(\square \)
2.4.6. Remark. By Theorem 2.4.5, we can naturally regard a fundamental motivic spectrum E in \mathcal{V} as a motivic spectrum in $\text{Sp}(\mathcal{V})$. In particular, the cohomology groups $E^{p,q}(R)$ are well-defined for all integers p,q and they coincide with the groups defined in Construction 2.4.1.

2.4.7. Corollary. Suppose that \mathcal{V} is multiplicative. Let E be a fundamental motivic ring spectrum in \mathcal{V} and R a motivic coring spectrum in \mathcal{V}. Then

$$E^{*,*}(R) := \bigoplus_{p,q} E^{p,q}(R)$$

forms a graded ring.

2.4.8. Corollary. Suppose that \mathcal{V} is multiplicative. Let E be a fundamental motivic E_1-ring spectrum. Then the ∞-category $\text{LMod}_E(\text{Sp}_{P_1}(\mathcal{V}))$ is stable.

Proof. Since $\text{Sp}_{P_1}(\mathcal{V})^{\text{fd}}$ is an ideal of $\text{Sp}_{P_1}(\mathcal{V})$, it inherits a symmetric monoidal structure and the induced functor

$$\text{LMod}_E(\text{Sp}_{P_1}(\mathcal{V})^{\text{fd}}) \to \text{LMod}_E(\text{Sp}_{P_1}(\mathcal{V}))$$

is fully faithful. Furthermore, it is essentially surjective, since every E-module in $\text{Sp}_{P_1}(\mathcal{V})$ is fundamental by Corollary 2.3.4. Hence, we have equivalences

$$\text{LMod}_E(\text{Sp}_{P_1}(\mathcal{V})) \cong \text{LMod}_E(\text{Sp}_{P_1}(\mathcal{V})^{\text{fd}}) \cong \text{LMod}_E(\text{Sp}_{P_1}(\text{Sp}(\mathcal{V}))^{\text{fd}}) \cong \text{LMod}_E(\text{Sp}_{P_1}(\text{Sp}(\mathcal{V}))),$$

where the second equivalence is by Theorem 2.4.5. Note that the last ∞-category is stable. \qed
3. Orientations and Projective Bundle Formula

In this section, we develop a theory of orientation for motivic spectra. We say that a motivic spectrum E is orientable if the map

$$[\mathcal{O}(1)] \otimes \text{id}_E : \mathbb{P}^1 \otimes E \to \mathcal{P}\text{ic} \otimes E$$

admits a left inverse. Note that if a motivic spectrum is orientable then it is fundamental. We formulate projective bundle formula for oriented motivic spectra and relate it to elementary blowup excision, which is a descent condition with respect to the blowup square

$$\begin{array}{ccc}
\mathbb{P}^{n-1} & \to & Q \\
\downarrow & & \downarrow \\
\{0\} & \to & \mathbb{A}^n.
\end{array}$$

More precisely, we prove that an oriented motivic spectrum satisfies projective bundle formula if and only if it satisfies elementary blowup excision (Lemma 3.3.5). This is convenient because elementary blowup excision is formulated without orientation nor \mathbb{P}^1-spectrum structure.

3.1. Orientation.

3.1.1. Let \mathcal{V} be an ∞-category presentably tensored over St as before, cf. 2.2.1. We assume that \mathcal{V} is compactly generated and that \mathbb{P}^1 is compact in \mathcal{V}.

3.1.2. Definition (Orientation). Let E be a motivic spectrum in \mathcal{V}. We say that E is orientable if the map

$$[\mathcal{O}(1)] \otimes \text{id}_E : \mathbb{P}^1 \otimes E \to \mathcal{P}\text{ic} \otimes E$$

admits a left inverse. When we choose such a left inverse, we call it an orientation of E. An oriented motivic spectrum in \mathcal{V} is a motivic spectrum in \mathcal{V} equipped with an orientation.

3.1.3. Remark. Let E be an oriented motivic spectrum in \mathcal{V}. Then the orientation is identified with a morphism in St_*

$$c_1 : \mathcal{P}\text{ic} \to \Omega^\infty \text{Map}(E, \Sigma_{\mathbb{P}^1} E).$$

In particular, for each line bundle \mathcal{L} on a stack X, we obtain a map

$$c_1(\mathcal{L}) : E \to (\Sigma_{\mathbb{P}^1} E)^X,$$

which we call the first Chern class of \mathcal{L}. When E is defined over a qcqs derived scheme S, the first Chern class of a line bundle on an S-stack is well-defined. Since the map c_1 is pointed, $c_1(\mathcal{O})$ is the zero map. The first Chern class $c_1(\mathcal{O}(1))$ of the line bundle $\mathcal{O}(1)$ on \mathbb{P}^1 is identified with the canonical equivalence $E \to \Sigma_{\mathbb{P}^1} E^{\mathbb{P}^1}$. Note that c_1 is identified with the first Chern class of the universal line bundle on $\mathcal{P}\text{ic}$.

3.1.4. Lemma. Let E be a motivic spectrum in \mathcal{V}. Then the following are equivalent:

(i) E is orientable.

(ii) There exists an element $c \in E^1(\mathcal{P}\text{ic} \otimes E)$ which lifts the identity $\text{id}_E \in E^0(E)$ via the map

$$E^1(\mathcal{P}\text{ic} \otimes E) \xrightarrow{(\mathcal{O}(1))} E^1(\mathbb{P}^1 \otimes E) \simeq E^0(E).$$

(iii) The map $E^{\mathcal{P}\text{ic}} \to E^{\mathbb{P}^1}$ admits a right inverse.

(iv) The motivic spectrum $\text{Map}(E, E)$ over $\text{Spec}(\mathbb{Z})$ is orientable.

Suppose that \mathcal{V} is multiplicative and that E is a motivic ring spectrum in \mathcal{V}, then these are further equivalent to the following:

(v) The map $\mathbb{P}^1 \otimes E \to \mathcal{P}\text{ic} \otimes E$ admits a left inverse as a morphism of left (or right) E-modules.
There exists an element $c \in E^1(\mathcal{Pic})$ which lifts the unit $\eta \in E^0(1)$ via the map

$$E^1(\mathcal{Pic}) \xrightarrow{[\theta(1)]_p} E^1(\mathbb{P}^1) \simeq E^0(1).$$

Proof. This is proved in the same way as Lemma 2.3.3. \qed

3.1.5. **Remark.** Suppose that \mathcal{V} is multiplicative. Let E be an orientable motivic ring spectrum in \mathcal{V}. Then we can choose an orientation of E as a morphism of right E-modules

$$c_1: \mathcal{Pic} \otimes E \to \mathbb{P}^1 \otimes E.$$

We call such an orientation a linear orientation. In other words, if E is an orientable motivic ring spectrum, then it always has a linear orientation. Note that a linear orientation is determined by a map

$$c_1: \mathcal{Pic} \to \Omega^\infty_{\mathbb{P}^1} E$$

and that, for a line bundle \mathcal{L} on a stack X, the first Chern class $c_1(\mathcal{L}): E \to (\Sigma_{\mathbb{P}^1} E)^X$ is reconstructed by the left multiplication by $c_1(\mathcal{L}) \in E^1(X)$. All orientations we choose for orientable motivic ring spectra will be linear orientations and will be referred to simply as orientations unless there is a possibility of confusion.

3.1.6. **Remark.** Let E be an orientable motivic ring spectrum. Then every left E-module M in $\text{Sp}_{p!(\mathcal{V})}$ is orientable and a linear orientation c_1 of E induces an orientation of M by

$$c_1 \otimes \text{id}_M: \mathcal{Pic} \otimes E \otimes E M \to \mathbb{P}^1 \otimes E \otimes E M.$$

Furthermore, every orientation c_1 of an orientable motivic spectrum F in \mathcal{V} arises in this way; indeed c_1 is induced from a linear orientation of the motivic ring spectrum $\text{Map}(F, F)$ over $\text{Spec}(\mathbb{Z})$.

3.1.7. **Lemma.** An orientable motivic spectrum in \mathcal{V} is fundamental.

Proof. Indeed, the map $[\theta(1)]: \mathbb{P}^1 \to \mathcal{Pic}$ factors through the canonical map $\partial: \mathbb{P}^1 \to S^1 \otimes \mathbb{G}_m$. \qed

3.1.8. **Lemma.** Let S be a qcqs derived scheme, E be an orientated motivic ring spectrum over S, and $X \in \text{Sm}_S$. Suppose we are given line bundles $\mathcal{L}_1, \ldots, \mathcal{L}_n, \mathcal{L}'_1, \ldots, \mathcal{L}'_n$ on X and an open covering $\{U_1, \ldots, U_n\}$ of X such that $\mathcal{L}_i|_{U_i} \simeq \mathcal{L}'_i|_{U_i}$. Then

$$\prod_{i=1}^n (c_1(\mathcal{L}_i) - c_1(\mathcal{L}'_i)) = 0$$

in $E^*(X)$. In particular:

(i) $c_1(\mathcal{L})$ is nilpotent in $E^*(X)$ for every line bundle \mathcal{L} on X.

(ii) $c_1(\theta(1))^{n+1} = 0$ in $E^*(\mathbb{P}^n)$.

Proof. Since $\gamma_i := c_1(\mathcal{L}_i) - c_1(\mathcal{L}'_i)$ is sent to zero in $E^1(U_i)$ for each i, it lifts to

$$\tilde{\gamma}_i \in E^1(X, U_i) := \pi_0 \text{fib}(\Sigma_{\mathbb{P}^1} E(X) \to \Sigma_{\mathbb{P}^1} E(U_i)).$$

Therefore, $\prod \gamma_i$ lifts to

$$\prod_{i=1}^n \tilde{\gamma}_i \in E^n(X, \bigcup U_i) = E^n(X, X) = 0$$

and we conclude $\prod \gamma_i = 0$. \qed

3.1.9 (Relation to pbf-local sheaves with transfers). Let S be a qcqs derived scheme. Let $\text{Sh}_{\text{pbf}}^\infty(\text{Sch}_S)$ be the ∞-category of pbf-local sheaves with transfers in the sense of [AI22]. Then there is a canonical symmetric
monoidal left adjoint \(\text{St}_{S+} \to \text{Sh}^{tr}_{\text{plf}}(\text{Sch}_{S}) \), which carries \(\mathbb{P}^1 \) to an invertible object. Therefore, we obtain a commutative diagram

\[
\begin{array}{ccc}
\text{Sp}_{\mathbb{P}^1}(\text{Sh}^{tr}_{\text{plf}}(\text{Sch}_{S})) & \longrightarrow & \text{Sp}_{\mathbb{P}^1}(S) \\
\cong & \alpha_{\mathbb{P}^1} & \alpha_{\mathbb{P}^1} \\
\text{Sh}^{tr}_{\text{plf}}(\text{Sch}_{S}) & \longrightarrow & \text{St}_{S}.
\end{array}
\]

The first Chern class of the universal line bundle on \(\mathcal{O}^{\text{ic}} \) is defined for pbfl-local sheaves with transfers as in the proof of [AI22, Lemma 3.2], which gives an orientation of the associated motivic spectra in the sense of Definition 3.1.2.

3.2. Projective bundle formula.

3.2.1. Definition (Projective bundle formula).

Let \(E \) be an oriented motivic spectrum in \(\mathcal{V} \). We say that \(E \) satisfies projective bundle formula if the map

\[
\sum_{i=1}^{n} c_1(\mathcal{O}(1))^i : \bigoplus_{i=1}^{n} \Sigma_{\mathbb{P}^i}^{-i}E \to E^{\mathbb{P}^n}
\]

is an equivalence for every \(n \geq 1 \).

3.2.2. Remark.

An oriented motivic spectrum \(E \) in \(\mathcal{V} \) satisfies projective bundle formula if and only if the map

\[
\sum_{i=1}^{n} c_1(\mathcal{O}(1))^i : \bigoplus_{i=1}^{n} E^{\mathbb{P}^{2i-1,2i-1}(\mathbb{P}^n \otimes X_+)}
\]

is an equivalence of spectra for every \(p, q, n \) and \(X \in \mathcal{V} \). It is because that \(\text{Sp}_{\mathbb{P}^1}(\mathcal{V}) \) is generated under colimits by \(\Sigma_{\mathbb{P}^i}^{\infty}X \) for \(X \in \mathcal{V} \) and \(i \geq 0 \), cf. Lemma 1.5.2.

3.2.3. Lemma.

Suppose that \(\mathcal{V} \) is defined over a qcqs derived scheme \(S \). Let \(E \) be a vector bundle of rank \(r \) on an \(S \)-stack \(X \) and \(E \) an oriented motivic spectrum in \(\mathcal{V} \) which satisfies projective bundle formula. Then the map

\[
\sum_{i=0}^{r-1} c_1(\mathcal{O}(1))^i : \bigoplus_{i=0}^{r-1} \Sigma_{\mathbb{P}^i}^{-i}E^{X_+} \to E^{\mathbb{P}(E)_+}
\]

is an equivalence.

Proof. We reduce to the case \(X \) is representable by a limit argument and reduce to the case \(E \) is trivial by Zariski descent. Then it is immediate from the definition. \(\square \)

3.2.4. Corollary.

Suppose that \(\mathcal{V} \) is multiplicative. Let \(\mathcal{E} \) be a vector bundle of rank \(r \) on an \(S \)-stack \(X \) and \(E \) an oriented motivic spectrum in \(\mathcal{V} \) which satisfies projective bundle formula. Then \(\xi := c_1(\mathcal{O}(1)) \) is in the center of the ring \(E^{\mathbb{P}^n}(\mathbb{P}^n_+ \otimes R) \). Then we have a ring isomorphism

\[
E^{\mathbb{P}^n}(\mathbb{P}^n_+ \otimes R) \cong E^{\mathbb{P}^n}(R)[\xi]/\xi^{n+1}.
\]

Proof. This follows from Lemma 3.1.8 and Lemma 3.2.3. \(\square \)

3.3. Elementary blowup excision.

3.3.1. Definition (Elementary blowup excision).

Let \(F \) be a presheaf on \(\text{Sm} \). We say that \(F \) satisfies elementary blowup excision if \(F \) carries the blowup square

\[
\begin{array}{ccc}
\mathbb{P}^n_X & \longrightarrow & Q \\
\downarrow & & \downarrow \\
\{0\}_X & \longrightarrow & A^n_X
\end{array}
\]
to a cartesian square for every $X \in \text{Sm}$ and $n \geq 1$.

3.3.2. Notation. Let St^{ex} denote the full subcategory of St spanned by sheaves satisfying the elementary blowup excision. For an ∞-category \mathcal{V} presentably tensored over St, we write $\mathcal{V}^{\text{ex}} := \mathcal{V} \otimes_{\text{St}} \text{St}^{\text{ex}}$. Then \mathcal{V}^{ex} is an accessible localization of \mathcal{V}. We say that an object in \mathcal{V} satisfies elementary blowup excision if it belong to \mathcal{V}^{ex}. Note that $\text{Sp}_{p_1}(\mathcal{V})^{\text{ex}} \simeq \text{Sp}_{p_1}(\mathcal{V})^{\text{ex}}$.

3.3.3. Remark. Note that the inclusion $\mathcal{V}^{\text{ex}} \to \mathcal{V}$ preserves filtered colimits, and thus the localization $\mathcal{V} \to \mathcal{V}^{\text{ex}}$ preserves compact objects. In particular, if \mathcal{V} is compactly generated and \mathbb{P}^1 is compact in \mathcal{V}, then the same holds for \mathcal{V}^{ex}.

3.3.4. Lemma. Let E be a motivic spectrum in \mathcal{V}. Then the following are equivalent:

(i) E satisfies elementary blowup excision.

(ii) $\Omega_{\mathbb{P}^1}^{\infty - 1}E$ satisfies elementary blowup excision for every $i \geq 0$.

(iii) For every n, the square

\[
\begin{array}{ccc}
E^\mathbb{A}^n & \longrightarrow & E^\mathbb{Q}^n \\
\downarrow & & \downarrow \\
E & \longrightarrow & E^\mathbb{P}^{n-1}
\end{array}
\]

is cartesian.

Proof. Let χ_n denote the canonical map $Q \otimes \mathbb{P}^{n-1} \{0\} \to \mathbb{A}^n$ in St. Then $\text{Sp}_{p_1}(\mathcal{V})^{\text{ex}}$ is a localization of $\text{Sp}_{p_1}(\mathcal{V})$ with respect to the maps $R \otimes \chi_n$ for all n and motivic spectra R in \mathcal{V}; from which the equivalence (i)\iff(iii) follows. Since $\text{Sp}_{p_1}(\mathcal{V})$ is generated under colimits by $\Sigma_i \mathbb{A}^n X$ for $X \in \mathcal{V}$ and $i \geq 0$ (Lemma 1.5.2), we see that $\text{Sp}_{p_1}(\mathcal{V})^{\text{ex}}$ is a localization of $\text{Sp}_{p_1}(\mathcal{V})$ with respect to the maps $\Sigma_i \chi_n \otimes X_+$ for all i, n and $X \in \mathcal{V}$; from which the equivalence (i)\iff(ii) follows. \qed

3.3.5. Lemma. Let E be an oriented motivic spectrum in \mathcal{V}. Then E satisfies projective bundle formula if and only if E satisfies elementary blowup excision.

Proof. Consider the blowup square

\[
\begin{array}{ccc}
D & \longrightarrow & Q \\
\downarrow & & \downarrow \pi \\
\{0\} & \longrightarrow & \mathbb{P}^n.
\end{array}
\]

There is a canonical projection $q: Q \to \mathbb{P}^{n-1}$ which makes Q a \mathbb{P}^{1}-bundle. The associated twisting sheaf $\mathcal{O}_q(1)$ is isomorphic to $\pi^* \mathcal{O}_{\mathbb{P}^1}(1)$. Since $\mathcal{O}_q(1)$ is trivial in a neighborhood of D and isomorphic to $q^* \mathcal{O}_{\mathbb{P}^{n-1}}(1)$ outside D, we have

\[
c_1(\mathcal{O}_q(1)) \cdot q^* c_1(\mathcal{O}_{\mathbb{P}^{n-1}}(1)) = c_1(\mathcal{O}_q(1))^2
\]

in $\text{Map}(E, E)^*(Q)$ by Lemma 3.1.8. It follows that the diagram

\[
\begin{array}{ccc}
\Sigma_{p_1}^{-1} E(\mathbb{P}^{n-1} \otimes R) & \longrightarrow & E(Q_+ \otimes R, D_+ \otimes R) \\
\Sigma_{p_1}^{-1} c_1(\mathcal{O}_{\mathbb{P}^{n-1}}(1)) & \longrightarrow & \nabla_{p_1}^{-1} c_1(\mathcal{O}_{\mathbb{P}^1}(1))^{n+1} \\
\oplus_{p_1}^{-1} \Sigma_{p_1}^{-1} E(R) & \longrightarrow & E(\mathbb{P}^n \otimes R)
\end{array}
\]

is commutative. The top horizontal map is an equivalence in general. Then the assertion is immediate from this diagram. \qed
3.3.6. **Lemma.** Suppose that \mathcal{V} is multiplicative. Let E be a homotopy commutative motivic ring spectrum in \mathcal{V} and R a homotopy cocommutative motivic coring spectrum in \mathcal{V}. Assume that E is orientable and satisfies elementary blowup excision. Then, for $x \in E^{p,q}(R)$ and $y \in E^{p',q'}(R)$, we have

$$xy = (-1)^{pp'}yx.$$

in $E^{p+p',q+q'}(R)$.

Proof. Choose an orientation of E. Then it satisfies projective bundle formula by Lemma 3.3.5. Let $\tau \in E^0(1) \simeq E^2(\mathbb{P}^1 \otimes \mathbb{P}^1)$ be the class of the permutation $\mathbb{P}^1 \otimes \mathbb{P}^1 \to \mathbb{P}^1 \otimes \mathbb{P}^1$. Then, for $x \in E^{p,q}(R)$ and $y \in E^{p',q'}(R)$, we have in general

$$xy = (-1)^{pp'}\tau^{qq'}yx.$$

Hence, it suffices to show that $\tau = 1$. Note that we have

$$c_1(\mathcal{O}(1))^2 = \tau c_1(\mathcal{O}(1))^2$$

in $E^2(\mathbb{P}^2)$. Then the projective bundle formula implies $\tau = 1$. □

3.3.7. **Remark.** In particular, if E and R are homotopy (co)commutative, then the centrality assumption in Corollary 3.2.4 is always satisfied.
4. Cohomology of the moduli stack of vector bundles

The goal of this section is to calculate the cohomology of the moduli stack \mathbf{Vect}_n of rank n vector bundles. Let E be a homotopy commutative oriented motivic ring spectrum which satisfies projective bundle formula. Then we prove a ring isomorphism

$$E^{\ast}(\mathbf{Vect}_n, X) \simeq E^{\ast}(X)[[c_1, \ldots, c_n]]$$

for every stack X (Corollary 4.2.7). This is a refinement of the main theorem in [AI22], which assumes the existence of transfers. The proof is mostly parallel to that of [AI22]. The main new aspect is Construction 4.1.3, which works thanks to Lemma 3.1.8.

Along the way, we develop a theory of Chern classes and formal group laws and establish their standard properties such as splitting principle (Lemma 4.2.3). Those facts have been well known for special types of cohomology theory as already proved in [BFG+71], but our results generalize them completely in a way that only depends on projective bundle formula.

4.1. Cohomology of the Picard stack.

4.1.1. Let \mathcal{V} be an ∞-category presentably tensored over \mathbf{St} as before, cf. 2.2.1. We assume that \mathcal{V} is compactly generated and that \mathbb{P}^1 is compact in \mathcal{V}.

4.1.2. Lemma. Let E be an orientable motivic spectrum in \mathcal{V}^{ex}. Then the canonical map

$$\mathbb{P}^\infty \otimes E \to \mathcal{P}ic \otimes E$$

admits a left inverse, where the tensor products are taken in $\text{Sp}_{\mathbb{P}^1}(\mathcal{V}^{ex})$.

Proof. Fix an orientation of E. Then $E' := \mathbb{P}^\infty \otimes E$ inherits an orientation and satisfies projective bundle formula by Lemma 3.3.5. We have a commutative diagram

$$\prod_{i=1}^{\infty} \sum_{m_i} E'(E) \xymatrix{ \prod_{i=1}^{\infty} \ar[d]_{\prod_{i=1}^{\infty} \xi_i} \ar[r]^-{\cong} & \mathcal{P}ic \otimes E \ar[r] & E'(\mathbb{P}^\infty \otimes E) }$$

and the diagonal arrow is an equivalence by the projective bundle formula. In particular, the identity map $\mathbb{P}^\infty \otimes E \to \mathbb{P}^\infty \otimes E$ lifts to a desired left inverse $\mathcal{P}ic \otimes E \to \mathbb{P}^\infty \otimes E$. \qed

4.1.3. Construction. For $n \geq 0$, we let

$$\tilde{\Delta}^n := \text{Proj} \left(\mathbb{Z}[U, T_0, \ldots, T_n] \right).$$

The assignment $n \mapsto \tilde{\Delta}^n$ forms a semi-cosimplicial scheme $\tilde{\Delta}^\ast$ in a standard way. Note that, for each $l \geq 1$, the twisting sheaves $\mathcal{O}(l)$ on $\tilde{\Delta}^\ast$ define a point of the semi-simplicial sheaf $\mathcal{P}ic(\tilde{\Delta}^\ast)$.

Let E be an oriented motivic ring spectrum. The first Chern class $\xi := c_1(\mathcal{O}(1)) \in E^1(\tilde{\Delta}^\ast)$ is well-defined and we have a morphism of semi-simplicial spectra

$$\xi^n : \Sigma^\infty \otimes E(R) \to E(\tilde{\Delta}^\ast \otimes R),$$

where the left hand side is a constant semi-simplicial spectrum. By Lemma 3.1.8, the map factors through the n-th bête truncation

$$\Sigma^\infty \otimes E(R) \xymatrix{ \ar[r]^-{\xi^n} \ar[d] & E(\tilde{\Delta}^\ast \otimes R) \ar[d] \ar[r]^-{\sigma_{\geq n}(\Sigma^\infty \otimes E(R))} }$$

...
By taking the coproduct with respect to all \(n \geq 0\), we obtain a map
\[
\sum_{n=0}^{\infty} E_n : \bigoplus_{n=0}^{\infty} E(R) \to E(\Delta^*_n \otimes R),
\]
which is a level-wise equivalence if \(E\) satisfies projective bundle formula. We set
\[
(E^{\Delta^*_n}/E^{\Delta^*_n})(R) := \text{cofib} \left(\bigoplus_{n=1}^{\infty} E(R) \xrightarrow{\sum_{n=1}^{\infty} E_n} E(\Delta^*_n \otimes R) \right).
\]
Then the canonical map
\[
E(R) \to (E^{\Delta^*_n}/E^{\Delta^*_n})(R)
\]
is a level-wise equivalence if \(E\) satisfies projective bundle formula.

4.1.4. **Lemma.** Let \(E\) be an orientable motivic ring spectrum which satisfies elementary blowup excision. Then, for every \(n, k \geq 0\), the diagram in \(\text{St}_n\)
\[
\begin{array}{ccc}
\Omega_{\mathcal{P}^1}^\infty (\text{Gr}_n \otimes E))_{\leq k} \\
\downarrow \\
\text{Vect}_n \\
\downarrow \\
(\Omega_{\mathcal{P}^1}^\infty (\text{Vect}_n \otimes E))_{\leq k}
\end{array}
\]
admits a lift as indicated, where the tensor products are taken in \(\text{Sp}_{\mathcal{P}^1}^{\text{ex}}\).

Proof. By [AI22, Lemma 3.3.A], the diagram in \(\text{St}_n\)
\[
\begin{array}{ccc}
|\text{cosk}_k(\text{Gr}_{\Delta^*_n})| \\
\downarrow \\
\text{Vect}_n \\
\downarrow \\
|\text{cosk}_k(\text{Vect}_{\Delta^*_n})|
\end{array}
\]
admits a lift as indicated. Then we are reduced to showing that the composition
\[
\text{Vect}_n \xrightarrow{\psi_{(k+1)a_{\mathcal{P}^1}}} |\text{cosk}_k(\text{Vect}_{\Delta^*_n})| \to |\text{cosk}_k(\Omega_{\mathcal{P}^1}^\infty (\text{Vect}_n \otimes E))_{\leq k}|
\]
\[
\to |\text{cosk}_k(\Omega_{\mathcal{P}^1}^\infty ((\text{Vect}_n \otimes E)_{\Delta^*_n}/(\text{Vect}_n \otimes E)^{\Delta^*_n}))| \to |\text{cosk}_k(\Omega_{\mathcal{P}^1}^\infty (\text{Vect}_n \otimes E))| \to (\Omega_{\mathcal{P}^1}^\infty (\text{Vect}_n \otimes E))_{\leq k}
\]
is homotopic to the canonical map. This is proved as in [AI22, Lemma 3.3.B]. \(\square\)

4.1.5. **Proposition.** Let \(E\) be an orientable motivic spectrum in \(\mathcal{V}^{\text{ex}}\). Then the canonical map
\[
\mathbb{P}^\infty \otimes E \to \mathcal{P}ic \otimes E
\]
is an equivalence.

Proof. By replacing \(E\) by \(\text{Map}(E, E)\), we may assume that \(E\) is an orientable motivic ring spectrum over \(\text{Spec}(\mathbb{Z})\) which satisfies elementary blowup excision. By Lemma 4.1.2, it suffices to show that the map
admits a right inverse. By Lemma 4.1.4, we have a commutative diagram
\[
\begin{array}{ccc}
(\Omega_{\mathcal{P}^1}^\infty (\mathbb{P}^\infty \otimes E))_{\leq k} \\
\downarrow \\
\mathcal{P}ic \\
\downarrow \\
(\Omega_{\mathcal{P}^1}^\infty (\mathcal{P}ic \otimes E))_{\leq k}
\end{array}
\]
and the map \(\phi_k \) is characterized as a unique map which makes the diagram commutative since the right vertical map has a left inverse by Lemma 4.1.2. Hence, these maps are assembled into a map

\[
\phi: \mathcal{P}ic \to \lim_k (\Omega^\infty_{\Sigma^k}(\mathbb{P} \otimes E))_{\leq k} \cong \Omega^\infty_{\Sigma^\infty}(\mathbb{P} \otimes E),
\]

where the equivalence follows from the fact that the \(\infty \)-topos Sh(X) has finite homotopy dimension for each \(X \in \text{Sm} \). We conclude the proof by noting that \(\phi \) induces a desired right inverse. \(\square \)

4.1.6. Corollary. Suppose that \(\mathcal{V} \) is multiplicative. Let \(E \) be a homotopy commutative motivic ring spectrum in \(\mathcal{V} \). Assume that \(E \) is oriented and satisfies projective bundle formula. Then we have a ring isomorphism

\[
E^{*,*}(\mathcal{P}ic \times R) \cong E^{*,*}(R)[[c_1]]
\]

for every homotopy cocommutative motivic coring spectrum \(R \) in \(\mathcal{V} \).

Proof. This follows from Corollary 3.2.4 and Proposition 4.1.5. \(\square \)

4.2. Chern classes and formal group laws.

4.2.1. Definition (Higher Chern class). Let \(E \) be a homotopy commutative motivic ring spectrum over a qcqs derived scheme \(S \). Assume that \(E \) is (linearly) oriented and satisfies projective bundle formula. Let \(\mathcal{E} \) be a vector bundle of rank \(r \geq 1 \) on an \(S \)-stack \(X \). For \(1 \leq i \leq r \), we define the \(i \)-th Chern class \(c_i(\mathcal{E}) \in E^{i}(X) \) to be the unique element which satisfies the formula

\[
\sum_{i=0}^{r} (-1)^i c_i(\mathcal{O}(1))^i \cdot p^* c_{r-i}(\mathcal{E}) = 0
\]

in \(E^{i}(\mathbb{P}(\mathcal{E})) \) with the convention \(c_0(\mathcal{E}) = 1 \), cf. Lemma 3.2.3. We write \(c(\mathcal{E}) := \sum_{i=0}^{r} c_i(\mathcal{E}) t^i \) and call it the total Chern class.

4.2.2 (Formal group law). Let \(E \) be as in Definition 4.2.1. Let \(m: \mathcal{P}ic \times \mathcal{P}ic \to \mathcal{P}ic \) be the map classifying the tensor products of line bundles. Consider the induced map

\[
m^*: E(\mathcal{P}ic_S) \to E(\mathcal{P}ic_S \times \mathcal{P}ic_S)
\]

and let \(f_{\text{univ}} \) be the image of the universal first Chern class \(c_1 \) in

\[
E^*(\mathcal{P}ic_S \times \mathcal{P}ic_S) \cong E^*(S)[[x, y]],
\]

where the isomorphism is by Corollary 4.1.6. Then \(f_{\text{univ}} \) is a formal group law over \(E^*(S) \). Since first Chern classes on qcqs derived schemes are nilpotent by Lemma 3.1.8, for every pair of line bundles \(\mathcal{L}, \mathcal{L}' \) on \(X \in \text{Sm}_S \), we have

\[
c_1(\mathcal{L} \otimes \mathcal{L}') = f_{\text{univ}}(c_1(\mathcal{L}), c_1(\mathcal{L}'))
\]

in \(E^*(X) \).

4.2.3. Lemma. Let \(E \) be a homotopy commutative motivic ring spectrum over a qcqs derived scheme \(S \). Assume that \(E \) is oriented and satisfies projective bundle formula. Let \(\mathcal{E} \) be a vector bundle of rank \(r \) on \(X \in \text{Sm}_S \). Then:

(i) \(c_i(\mathcal{E}) \) is nilpotent in \(E^*(X) \) for every \(i \geq 1 \).

(ii) If \(\mathcal{E} \) admits a filtration

\[
0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_r = \mathcal{E}
\]

such that \(\mathcal{L}_i = \mathcal{E}_i/\mathcal{E}_{i-1} \) is a line bundle for \(1 \leq i \leq r \), then

\[
c(\mathcal{E}) = \prod_{i=1}^{r} (1 + c_1(\mathcal{L}_i) t)
\]

in \(E^*(X)[t] \).
(iii) If we have a fiber sequence

\[\mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \]

of vector bundles on \(X \), then \(c(\mathcal{E}) = c(\mathcal{E}') \cdot c(\mathcal{E}'') \) in \(E^*(X)[t] \).

Proof. By taking the pullback of \(\mathcal{E} \) to the derived scheme representing full flags of \(\mathcal{E} \), (iii) is reduced to (ii). Similarly, (i) follows from (ii) and the fact that first Chern classes are nilpotent. To prove (ii), we are reduced to the case \(\mathcal{E} = \bigoplus_{i=1}^r \mathcal{L}_i \) by the splitting trick as in [AI22, Lemma 4.4]. Consider the universal quotient \(\mathcal{E} \to \mathcal{O}(1) \) on \(\mathbb{P}(\mathcal{E}) \). The induced map \(\mathcal{L}_i \to \mathcal{O}(1) \) gives a global section \(s_i \) of \(\mathcal{L}^{-1}_i(1) \), and let \(D_i \subset \mathbb{P}(\mathcal{E}) \) be the derived vanishing locus of \(s_i \). Then the intersection of all \(D_i \) with \(1 \leq i \leq r \) is empty, and thus we get \(\prod_i c_1(\mathcal{L}^{-1}_i(1)) = 0 \) by Lemma 3.1.8. By the formal group law, we have

\[
c_1(\mathcal{O}(1)) = c_1(\mathcal{L}_i \otimes \mathcal{L}^{-1}_i(1)) = c_1(\mathcal{L}_i) + c_1(\mathcal{L}^{-1}_i(1)) + \sum_{p,q \geq 1} a_{pq} c_1(\mathcal{L}_i)^p c_1(\mathcal{L}^{-1}_i(1))^q
\]

for some \(a_{pq} \in E^*(S) \). Therefore, we have \(\prod_i (c_1(\mathcal{O}(1)) - c_1(\mathcal{L}_i)) = 0 \), which implies the desired formula. \(\square \)

4.2.4. Lemma. Suppose that \(\mathcal{V} \) is defined over a qcqs derived scheme \(S \). Let \(E \) be a homotopy commutative oriented motivic ring spectrum over \(S \). Let \(M \) be an \(E \)-module in \(\mathcal{V} \). Then the map

\[
\sum_{\alpha} c(\mathcal{V})^\alpha : \bigoplus_{\alpha} \sum_{p,q \geq 1} c_1(\mathcal{V})^p c_1(\mathcal{V}^{-1})^q \to M^{Gr_n}(\mathcal{V}),
\]

is an equivalence, where \(\alpha \) runs over all \(n \)-tuples of non-negative integers with \(|\alpha| \leq r - n \). For an \(n \)-tuple \(\alpha = (a_1, \ldots, a_n) \) of non-negative integers, we write \(|\alpha| := \sum a_i, \|\alpha\| := \sum i a_i \), and \(c^\alpha := \prod c_i^{a_i} \).

Proof. The proof of [AI22, Lemma 4.5] works as it is under the validity of Lemma 4.2.3. \(\square \)

4.2.5. Corollary. Suppose that \(\mathcal{V} \) is multiplicative. Let \(E \) be a homotopy commutative oriented motivic ring spectrum in \(\mathcal{V} \) which satisfies projective bundle formula. Then we have a ring isomorphism

\[
E^*(Gr_n, \otimes R) \simeq E^*(R)[[c_1, \ldots, c_n]]
\]

for every homotopy cocommutative motivic coring spectrum \(R \) in \(\mathcal{V} \).

Proof. This follows from Lemma 4.2.4 as in [AI22, Corollary 4.6]. \(\square \)

4.2.6. Theorem. Suppose that \(\mathcal{V} \) is multiplicative. Let \(E \) be a homotopy commutative orientable motivic ring spectrum in \(\mathcal{V}^\text{ex} \). Then the canonical map

\[
Gr_n \otimes E \rightarrow \mathcal{V}ect_n \otimes E
\]

is an equivalence, where the tensor products are taken in \(\text{Sp}_{\mathcal{V}}(\mathcal{V}^\text{ex}) \).

Proof. We may assume that \(\mathcal{V} = \text{St} \). We first prove that the canonical map in the assertion admits a left inverse. Fix an orientation of \(E \). Let \(\mathcal{E}_{univ} \) be the universal vector bundle of rank \(n \) on \(\mathcal{V}ect_n \) and \(\mathcal{O} \) the universal quotient vector bundle on \(\text{Gr}_n \). Note that \(c_1(\mathcal{E}_{univ}) \) lifts \(c_1(\mathcal{O}) \) via the canonical map \(E^*(\mathcal{V}ect_n) \to E^*(\text{Gr}_n) \). Consider the commutative diagram

\[
\begin{array}{ccc}
\prod_a \sum_{p,q} c_1(\mathcal{E}_{univ})^p c_1(\mathcal{E}_{univ}^{-1})^q & \xrightarrow{\sim} & M(\mathcal{V}ect_n) \\
\xrightarrow{\pi} & M(\text{Gr}_n) & \\
\end{array}
\]
for an E-module M. Then the diagonal arrow is an equivalence if M satisfies projective bundle formula by Lemma 4.2.4. In particular, by taking $M := \text{Gr}_n \otimes E$, we see that the canonical map $\Sigma_{p_1}^\infty \text{Gr}_n \to M$ lifts to a map $\Sigma_{p_1}^\infty \text{Vect}_n \to M$, which gives a desired left inverse.

The rest of the proof is identical to that of Proposition 4.1.5. By Lemma 4.1.4, we have a commutative diagram

\[
\begin{array}{ccc}
\text{Vect}_n & \xrightarrow{\phi_k} & (\Omega_{p_1}^\infty (\text{Gr}_n \otimes E))_{\leq k} \\
\downarrow & & \downarrow \\
(\Omega_{p_1}^\infty (\text{Vect}_n \otimes E))_{\leq k}
\end{array}
\]

and the map ϕ_k is characterized as a unique map which makes the diagram commutative since the right vertical map has a left inverse. Hence, these maps are assembled into a map

\[\phi : \text{Vect}_n \to \lim_k (\Omega_{p_1}^\infty (\text{Gr}_n \otimes E))_{\leq k} \simeq \Omega_{p_1}^\infty (\text{Gr}_n \otimes E)\]

which induces a right inverse of the canonical map $\text{Gr}_n \otimes E \to \text{Vect}_n \otimes E$. Since we have seen that the canonical map has a left inverse, we conclude that it is an equivalence. \[\square\]

4.2.7. Corollary. Suppose that \mathcal{V} is multiplicative. Let E be a homotopy commutative oriented motivic ring spectrum in \mathcal{V} which satisfies projective bundle formula. Then we have a ring isomorphism

\[E^{*,*}(\text{Vect}_n \otimes R) \simeq E^{*,*}(R)[[c_1, \ldots, c_n]]\]

for every homotopy cocommutative motivic coring spectrum R in \mathcal{V}.

Proof. This follows from Corollary 4.2.5 and Theorem 4.2.6. \[\square\]

4.2.8. Remark (Syntomic cohomology). The results in this section can be applied to syntomic cohomology in the sense of [BL22] and reprove and generalize some of the results in [BL22, §9] (assuming projective bundle formula [BL22, Theorem 9.1.1]).
5. Applications to K-theory

In this section, we apply the results we obtained so far to algebraic K-theory. The main result is a universality of K-theory as an $S[\mathcal{Pic}]$-module: We prove that the non-connective K-theory is a universal $S[\mathcal{Pic}]$-module which satisfies projective bundle formula and Zariski descent (Theorem 5.3.3). We also discuss the Selmer K-theory introduced in [Cla17]. We prove that the Selmer K-theory is a universal $S[\mathcal{Pic}]$-module which satisfies projective bundle formula and étale descent (Theorem 5.4.4).

As a by-product, we see that giving an additive morphism $K \to K$, where K denotes the K-theory stack, is equivalent to giving an arbitrary morphism of stacks $\mathcal{Pic} \to K$ (Theorem 5.1.4). This would be helpful for studying cohomology operations in K-theory.

5.1. Cohomology of the K-theory stack. We apply Corollary 4.2.7 to study cohomology of the K-theory stack. Theorem 5.1.4 below is a version of [GS09, Proposition 2.27] and [Rio10, Proposition 5.1.1]. Our proof is inspired by their proofs.

5.1.1. Let \mathcal{V} be an ∞-category presentably tensored over St as before, cf. 2.2.1. We assume that \mathcal{V} is compactly generated and that \mathbb{P}^1 is compact in \mathcal{V}.

5.1.2 (K-theory). Let K denote the K-theory stack on qcqs derived schemes, which yields an S-stack for each qcqs derived scheme S. Note that the K-theory stack is left Kan extended from smooth \mathbb{Z}-algebras as proved by Bhatt and Lurie, cf. [EHK+20, Appendix A]. Therefore, the base change functor $\mathrm{St} \to \mathrm{St}_S$ carries K to K.

5.1.3. Notation. For stacks X, Y, we write $[X,Y]$ for the set of homotopy classes of morphisms in St. When X, Y are pointed, we write $[X,Y]_+$ for the set of homotopy classes of morphisms in St_+.

5.1.4. Theorem. Suppose that \mathcal{V} is multiplicative. Let E be a homotopy commutative orientable motivic ring spectrum in $\mathcal{V}^{\mathrm{ex}}$. Then the canonical map

$$\mathcal{Pic}_+ \otimes E \to K \otimes E$$

admits a left inverse s such that, for every E-module M in $\mathrm{Sp}_{\mathbb{Z}}(\mathcal{V}^{\mathrm{ex}})$, the map

$$s^*: M(\mathcal{Pic}) = \text{Map}(\mathcal{Pic}_+, \Omega_{\mathbb{P}^1}^\infty M) \to \tilde{M}(K) = \text{Map}(K, \Omega_{\mathbb{P}^1}^\infty M)$$

identifies $M^0(\mathcal{Pic})$ with the subset of $\tilde{M}^0(K) = [K, \Omega_{\mathbb{P}^1}^\infty M]_+$ consisting of additive morphisms.

Proof. We may assume that $\mathcal{V} = \mathrm{St}$. Let $\text{Add}(-, \Omega_{\mathbb{P}^1}^\infty M)$ denote the subset of $[\Omega_{\mathbb{P}^1}^\infty M]_+$ consisting of additive morphisms. We only have to show that the pre-composition by the canonical map $\mathcal{Pic}_+ \to K$ induces an isomorphism

$$\text{Add}(K, \Omega_{\mathbb{P}^1}^\infty M) \to M^0(\mathcal{Pic}).$$

Indeed, if we take $\mathcal{Pic}_+ \otimes E$ as M, then the canonical map $\mathcal{Pic}_+ \to \Omega_{\mathbb{P}^1}^\infty (\mathcal{Pic}_+ \otimes E)$ lifts to an additive morphism $K \to \Omega_{\mathbb{P}^1}^\infty (\mathcal{Pic}_+ \otimes E)$ that yields a desired left inverse s.

Let \tilde{K} denote the reduced K-theory. Consider the commutative diagram

$$\begin{array}{ccc}
\tilde{M}(K) & \longrightarrow & \tilde{M}(K) \\
\downarrow & & \downarrow \\
\tilde{M}(\mathcal{Pic}) & \longrightarrow & M(\mathcal{Pic}) \\
\end{array}$$

where the bottom sequence is a split fiber sequence. Since the induced sequence

$$\text{Add}(\tilde{K}, \Omega_{\mathbb{P}^1}^\infty M) \to \text{Add}(K, \Omega_{\mathbb{P}^1}^\infty M) \to \text{Add}(\mathcal{Z}, \Omega_{\mathbb{P}^1}^\infty M)$$

is a split exact sequence and \(\text{Add}(\mathbb{Z}, \Omega^\infty_{\mathbb{P}^1} \mathcal{M}) = M^0(\mathcal{S}) \), we are reduced to showing that the map

\[
\text{Add}(\tilde{K}, \Omega^\infty_{\mathbb{P}^1} \mathcal{M}) \to \tilde{M}^0(\mathfrak{Pic})
\]

is an isomorphism.

Note that \(\tilde{K} \) is equivalent to the plus construction of \(\mathcal{V} \text{ect}_\infty := \text{colim}_n \mathcal{V} \text{ect}_n \). Since \(\Omega^\infty_{\mathbb{P}^1} \mathcal{M} \) is an infinite loop space by Theorem 2.4.5, we have

\[
M(\tilde{K}) \simeq M(\mathcal{V} \text{ect}_\infty^+) \simeq M(\mathcal{V} \text{ect}_\infty).
\]

We see that \(\text{Add}(\tilde{K}, \Omega^\infty_{\mathbb{P}^1} \mathcal{M}) \) is identified with the subgroup of the coalgebra \(M^0(\tilde{K}) \) consisting of primitive elements as in [GS09, Lemma 2.25]. Then the comultiplication \(\Delta \) of \(M^0(\tilde{K}) \) is identified with the limit of the canonical maps

\[
\begin{align*}
M^0(\mathcal{V} \text{ect}_{n+m}) & \to M^0(\mathcal{V} \text{ect}_n \times \mathcal{V} \text{ect}_m) \\
\Delta & \downarrow \quad \downarrow
\end{align*}
\]

by Corollary 4.2.7. Here \((t_1, t_2, \ldots) \) are unique variables such that the \(n \)-th Chern class \(c_n \) is the \(n \)-th elementary polynomial of them. Therefore, primitive elements \(f \) in \(M^0(\tilde{K}) \) are completely determined by their images \(f_0 \) in \(M^0(\mathfrak{Pic}) \). More precisely,

\[
f = \{ \sum_{i=1}^n f_0(t_i) \} \in \text{lim}_n M^0(\mathcal{V} \text{ect}_n) = M^0(\tilde{K}).
\]

This proves the desired isomorphism \(\text{Add}(\tilde{K}, \Omega^\infty_{\mathbb{P}^1} \mathcal{M}) \simeq \tilde{M}^0(\mathfrak{Pic}) \).

5.1.5. Remark (Adams operation). By Theorem 5.1.4, the pre-composition by the canonical map \(\mathfrak{Pic} \to K \) restricts to an isomorphism

\[
\text{Add}(K, K) \simeq [\mathfrak{Pic}, K].
\]

In particular, for each positive integer \(k \), we obtain a unique additive morphism \(\psi^k : K \to K \) which restricts to a morphism \(\mathfrak{Pic} \to K \) sending \(\mathcal{L} \) to \(\mathcal{L}^\otimes k \). This is exactly the \(k \)-th Adams operation on \(K \)-theory.

5.2. \(\mathbb{P}^1 \)-periodicity.

5.2.1. Notation (Bott element). We write \(Q(\mathfrak{Pic}) := \Omega^\infty(\Sigma^\infty \mathfrak{Pic},_n) \) and regard it as an \(\mathbb{E}_\infty \)-algebra in \(\text{St}_n \). Let \(\beta \) be a morphism in \(\text{St}_n \) defined by

\[
\beta := 1 - [\theta(-1)] : \mathbb{P}^1 \to Q(\mathfrak{Pic}),
\]

which we refer to as the Bott element.

5.2.2. Definition (\(\mathbb{P}^1 \)-periodicity). We say that a \(Q(\mathfrak{Pic}) \)-module \(E \) in \(\mathcal{V} \) satisfies \(\mathbb{P}^1 \)-periodicity if the map

\[
\beta : E \to E^{\mathbb{P}^1}
\]

is an equivalence. Let \(\text{Mod}^{\mathbb{P}^1}_{Q(\mathfrak{Pic})}(\mathcal{V}) \) denote the full subcategory of \(\text{Mod}_{Q(\mathfrak{Pic})}(\mathcal{V}) \) spanned by \(Q(\mathfrak{Pic}) \)-modules which satisfy \(\mathbb{P}^1 \)-periodicity.

5.2.3. Remark. The \(\infty \)-category \(\text{Mod}^{\mathbb{P}^1}_{Q(\mathfrak{Pic})}(\mathcal{V}) \) is an accessible localization of \(\text{Mod}_{Q(\mathfrak{Pic})}(\mathcal{V}) \). Let \(L_{\mathbb{P}^1} \) denote the localization

\[
L_{\mathbb{P}^1} : \text{Mod}_{Q(\mathfrak{Pic})}(\mathcal{V}) \to \text{Mod}^{\mathbb{P}^1}_{Q(\mathfrak{Pic})}(\mathcal{V}).
\]

If \(\mathcal{V} \) is multiplicative, then \(\text{Mod}^{\mathbb{P}^1}_{Q(\mathfrak{Pic})}(\mathcal{V}) \) admits a unique presentably symmetric monoidal structure for which the localization \(L_{\mathbb{P}^1} \) is symmetric monoidal. In general, \(\text{Mod}^{\mathbb{P}^1}_{Q(\mathfrak{Pic})}(\mathcal{V}) \) is presentably tensored over \(\text{Mod}^{\mathbb{P}^1}_{Q(\mathfrak{Pic})}(\text{St}_n) \) and we have an equivalence

\[
\text{Mod}^{\mathbb{P}^1}_{Q(\mathfrak{Pic})}(\mathcal{V}) \simeq \text{Mod}^{\mathbb{P}^1}_{Q(\mathfrak{Pic})}(\text{St}_n) \otimes_{\text{St}_n} \mathcal{V},
\]
where the tensor product is taken in $\text{Mod}_{\Theta}(\text{Pr}^1)$.

5.2.4. Remark. Since \mathbb{P}^1 is invertible in $\text{Mod}_{Q(\mathcal{P}ic)}^\mathbb{P}^1(\mathcal{V}_\ast)$, we have an equivalence

$$\text{Mod}_{Q(\mathcal{P}ic)}^\mathbb{P}^1(\mathcal{V}_\ast) \cong \text{Sp}_{\mathbb{P}^1}(\text{Mod}_{Q(\mathcal{P}ic)}^\mathbb{P}^1(\mathcal{V}_\ast)).$$

In particular, if E is an $Q(\mathcal{P}ic)$-module in \mathcal{V}_\ast which satisfies \mathbb{P}^1-periodicity, then it canonically yields a motivic spectrum in \mathcal{V}_\ast, which we denote by E. The motivic spectrum E in \mathcal{V}_\ast is periodic, i.e., $\Sigma_{\mathbb{P}^1}E \cong E$.

Moreover, the map

$$\beta : E \overset{\sim}{\rightarrow} E^\mathbb{P}^1$$

canonically factors through $E^{\mathcal{P}ic}$ and it gives an orientation of E in the sense of Definition 3.1.2. Then the Bott element β is recovered as the first Chern class $c_1(\mathcal{O}(1)) : E \rightarrow \Sigma_{\mathbb{P}^1}E^\mathbb{P}^1 \cong E^{\mathbb{P}^1}$.

5.2.5. Lemma. The ∞-category $\text{Mod}_{Q(\mathcal{P}ic)}^\mathbb{P}^1(\mathcal{V}_\ast)$ is stable.

Proof. This follows from Theorem 2.4.5. \qed

5.2.6. Lemma. Let E be a $Q(\mathcal{P}ic)$-module in $\text{Sp}_{\mathbb{P}^1}(\mathcal{V})$. Then there is a natural equivalence

$$L_{\mathbb{P}^1}E \cong E[\beta^{-1}] \cong \text{colim}(E \xrightarrow{\beta} \Sigma^{-1}_{\mathbb{P}^1}E \xrightarrow{\beta} \Sigma^{-2}_{\mathbb{P}^1}E \xrightarrow{\beta} \cdots).$$

Proof. Since \mathbb{P}^1 is invertible in $\text{Sp}_{\mathbb{P}^1}(\mathcal{V})$, the localization $L_{\mathbb{P}^1}$ on $\text{Mod}_{Q(\mathcal{P}ic)}(\text{Sp}_{\mathbb{P}^1}(\mathcal{V}))$ is exactly the inversion of the Bott element β, i.e., $L_{\mathbb{P}^1} : E \rightarrow E[\beta^{-1}]$. Since $\pi_1 \text{Map}(\ast, Q(\mathcal{P}ic))$ is abelian, this localization has the desired description, cf. [BNT18, Appendix C]. \qed

5.2.7. Corollary. Let E be a $Q(\mathcal{P}ic)$-module in \mathcal{V}_\ast. Then there is a natural equivalence

$$L_{\mathbb{P}^1}E \cong \text{colim}(\Sigma_{\mathbb{P}^1}E \xrightarrow{\beta} \Sigma_{\mathbb{P}^1}^{\infty}E \xrightarrow{\beta} \Sigma_{\mathbb{P}^1}^{-2}E \xrightarrow{\beta} \cdots).$$

Proof. Note that we have a commutative diagram

$$\begin{array}{ccc}
\text{Sp}_{\mathbb{P}^1}(\text{Mod}_{Q(\mathcal{P}ic)}(\mathcal{V}_\ast)) & \xrightarrow{L_{\mathbb{P}^1}} & \text{Sp}_{\mathbb{P}^1}(\text{Mod}_{Q(\mathcal{P}ic)}^\mathbb{P}^1(\mathcal{V}_\ast)) \\
\Sigma_{\mathbb{P}^1} & \xrightarrow{\Sigma_{\mathbb{P}^1}} & \Sigma_{\mathbb{P}^1} \\
\text{Mod}_{Q(\mathcal{P}ic)}(\mathcal{V}_\ast) & \xrightarrow{L_{\mathbb{P}^1}} & \text{Mod}_{Q(\mathcal{P}ic)}^\mathbb{P}^1(\mathcal{V}_\ast). \\
\end{array}$$

The assertion is immediate from this diagram and Lemma 5.2.6. \qed

5.2.8 (Pbf-localization). Let E be a $Q(\mathcal{P}ic)$-module in \mathcal{V}_\ast which satisfies \mathbb{P}^1-periodicity. Then it follows from Lemma 3.3.5 that E satisfies elementary blowup excision if and only if it satisfies projective bundle formula, i.e., the map

$$\sum_{i=1}^n \beta_i : \bigoplus_{i=1}^n E \rightarrow E^\mathbb{P}^n$$

is an equivalence for every $n \geq 1$. We write $\text{Mod}_{Q(\mathcal{P}ic)}^\text{pbf}(\mathcal{V}_\ast) := \text{Mod}_{Q(\mathcal{P}ic)}^\mathbb{P}^1(\mathcal{V}_\ast^{\text{ex}})$; then it is identified with the full subcategory of $\text{Mod}_{Q(\mathcal{P}ic)}(\mathcal{V}_\ast)$ spanned by $Q(\mathcal{P}ic)$-modules which satisfies (periodic) projective bundle formula. We consider the localizations

$$\text{Mod}_{Q(\mathcal{P}ic)}(\mathcal{V}_\ast) \xrightarrow{L_{\mathbb{P}^1}} \text{Mod}_{Q(\mathcal{P}ic)}^\mathbb{P}^1(\mathcal{V}_\ast) \xrightarrow{\text{ex}} \text{Mod}_{Q(\mathcal{P}ic)}^\text{pbf}(\mathcal{V}_\ast)$$

and refer to L_{pbf} as the pbf-localization.
5.2.9. Remark. When \(\mathcal{V} \) is stable, we could instead consider \(S[\mathcal{P}ic] \)-modules and the localizations

\[
\begin{align*}
\Mod_{S[\mathcal{P}ic]}(\mathcal{V}) & \xrightarrow{L_p} \Mod_{S[\mathcal{P}ic]}^1(\mathcal{V}) \xrightarrow{L_{ex}} \Mod_{S[\mathcal{P}ic]}^{pbf}(\mathcal{V}), \\
\Mod_{Q(\mathcal{P}ic)}(\mathcal{V}) & \xrightarrow{L_p} \Mod_{Q(\mathcal{P}ic)}^1(\mathcal{V}) \xrightarrow{L_{ex}} \Mod_{Q(\mathcal{P}ic)}^{pbf}(\mathcal{V})
\end{align*}
\]

but it does not make any difference, namely, the diagram

\[
\begin{align*}
\Mod_{S[\mathcal{P}ic]}(\mathcal{V}) & \xrightarrow{L_p} \Mod_{S[\mathcal{P}ic]}^1(\mathcal{V}) \xrightarrow{L_{ex}} \Mod_{S[\mathcal{P}ic]}^{pbf}(\mathcal{V}) \\
\Mod_{Q(\mathcal{P}ic)}(\mathcal{V}) & \xrightarrow{L_p} \Mod_{Q(\mathcal{P}ic)}^1(\mathcal{V}) \xrightarrow{L_{ex}} \Mod_{Q(\mathcal{P}ic)}^{pbf}(\mathcal{V})
\end{align*}
\]

is commutative, where the vertical functors are the restrictions of scalars.

5.3. Universality of \(K \)-theory.

5.3.1. Let \(S[\mathcal{P}ic] \) be the stabilization \(\Sigma^\infty \mathcal{P}ic_+ \), which yields an \(E_\infty \)-algebra in \(\text{Sp}(\text{St}_S) \) for each qcqs derived scheme \(S \). We consider the pbf-localization \(L_{pbf}S[\mathcal{P}ic] \) of the \(S[\mathcal{P}ic] \)-module \(S[\mathcal{P}ic] \) in \(\text{Sp}(\text{St}_S) \).

5.3.2 (\(K \)-theory). Let \(S \) be a qcqs derived scheme. We have an evident morphism \(Q(\mathcal{P}ic) \to K \) of \(E_\infty \)-algebras in \(\text{St}_S \), and \(K \) satisfies projective bundle formula with respect to this \(Q(\mathcal{P}ic) \)-module structure, cf. [Kha20, Theorem B]. In particular, \(K \) canonically yields an oriented motivic \(E_\infty \)-ring spectrum \(K_{\text{Bass}} \). The Bass non-connective \(K \)-theory in \(\text{Sp}(\text{St}_S) \) is commutative, where the vertical functors are the restrictions of scalars.

5.3.3. Theorem. For every qcqs derived scheme \(S \), the canonical map

\[
L_{pbf}S[\mathcal{P}ic] \to K_{\text{Bass}}
\]

is an equivalence of \(E_\infty \)-algebras in \(\text{Sp}(\text{St}_S) \).

Proof. We may assume that \(S = \text{Spec}(\mathbb{Z}) \). We work over the \(\infty \)-category \(\text{St}^{ex} \). Then, considering each universal construction in that sense, the assertion is equivalent to saying that the canonical map

\[
L_{p1} \Sigma^\infty \mathcal{P}ic_+ \to K_{\text{Bass}}
\]

is an equivalence; where \(L_{p1} \) is the left adjoint to \(\text{Mod}_{Q(\mathcal{P}ic)}^1(\text{Sp}^{ex}) \subset \text{Mod}_{Q(\mathcal{P}ic)}(\text{Sp}(\text{St}^{ex})) \) and \(\Sigma^\infty \) is the stabilization \(\text{St}^{ex} \to \text{Sp}(\text{St}^{ex}) \). By Lemma 5.2.6, we have equivalences of motivic spectra in \(\text{Sp}(\text{St}^{ex}) \)

(A) \[
L_{p1} \Sigma^\infty \mathcal{P}ic_+ \simeq \text{colim}_{i} \Sigma^{\infty-i} \Sigma^\infty \mathcal{P}ic_+ \quad K_{\text{Bass}} \simeq \text{colim}_{i} \Sigma^{\infty-i} K_{\text{Bass}}.
\]

Similarly, by applying Corollary 5.2.7 to \(\mathcal{V} = \text{St}^{ex} \), we get an equivalence of motivic spectra in \(\text{St}^{ex} \)

\[
K \simeq \text{colim}_{i} \Sigma^{\infty-i} K.
\]

Then, by applying \(\Sigma^\infty : \text{Sp}_{p1}(\text{St}^{ex}) \to \text{Sp}_{p1}(\text{Sp}(\text{St}^{ex})) \) (which carries \(K \) to \(K_{\text{Bass}} \) by Theorem 2.4.5), we get an equivalence of motivic spectra in \(\text{Sp}(\text{St}^{ex}) \)

(B) \[
K_{\text{Bass}} \simeq \text{colim}_{i} \Sigma^{\infty-i} \Sigma^\infty K.
\]
Now we are going to compare (A) and (B). We have a commutative diagram

\[
L_{p^l} \Sigma^\infty \mathcal{Pic}_+ \simeq \text{colim} \left(\Sigma^\infty \mathcal{Pic}_+ \to \Sigma^\infty \mathcal{Pic}_+ \to \Sigma^\infty \mathcal{Pic}_+ \to \cdots \right)
\]

\[
K^{\text{Bass}} \simeq \text{colim} \left(\Sigma^\infty \mathcal{Pic}_+ \to \Sigma^\infty \mathcal{Pic}_+ \to \Sigma^\infty \mathcal{Pic}_+ \to \cdots \right)
\]

Warn that the canonical maps \(\Sigma^\infty \mathcal{Pic}_+ \to \Sigma^\infty \mathcal{Pic}_+ \) may not make the diagram commutative (because \(\beta \) on the bottom is the infinity suspension of \(\beta : \Sigma^\infty \mathcal{Pic}_+ \to \Sigma^\infty \mathcal{Pic}_+ \)). Let \(E \) be a homotopy commutative orientable motivic ring spectrum in \(\text{Sp}(\text{St}^\text{ex}) \). Let \(s : K \otimes E \to \mathcal{Pic}_+ \otimes E \) be the left inverse of the canonical map as in Theorem 5.1.4. We claim that the diagram

\[
\begin{array}{ccc}
\Sigma^\infty \mathcal{Pic}_+ \otimes E & \xrightarrow{\beta} & \Sigma^\infty \mathcal{Pic}_+ \otimes E \\
\downarrow s & & \downarrow s \\
\Sigma^\infty \mathcal{Pic}_+ \otimes E & \xrightarrow{\beta} & \Sigma^\infty \mathcal{Pic}_+ \otimes E
\end{array}
\]

commutes (it is the same as writing \(\Sigma^\infty \mathcal{Pic}_+ \otimes E \), etc., with an appropriate interpretation of tensor product). We only need to verify the case \(n = 0 \). The commutativity of the semi-ellipsoid part follows from the fact (Theorem 5.1.4) that \(K \to \Omega^\infty \Omega^\infty \mathcal{Pic}_+ \otimes \mathcal{Pic}_+ \otimes K \) is a unique additive morphism lifting its restriction to \(\mathcal{Pic} \). The commutativity of \(s \) and \(\beta \) follows from the fact that \(s : K \to \Omega^\infty \Omega^\infty \mathcal{Pic}_+ \otimes \mathcal{Pic}_+ \otimes E \) is an additive morphism lifting the canonical map from \(\mathcal{Pic} \).

Consequently, for each \(E \)-module \(M \) in \(\text{Sp}(\text{Sp}(\text{St}^\text{ex})) \), we obtain a commutative diagram

\[
\begin{array}{ccc}
\text{Map}(L_{p^l} \Sigma^\infty \mathcal{Pic}_+, M) & \simeq & \lim \left(\cdots \xrightarrow{\beta} \text{Map}(\mathcal{Pic}_+, \Omega^\infty \mathcal{Pic}_+) \xrightarrow{\beta} \text{Map}(\mathcal{Pic}_+, \Omega^\infty \mathcal{Pic}_+) \right) \\
\downarrow & & \downarrow \\
\text{Map}(K^{\text{Bass}}, M) & \simeq & \lim \left(\cdots \xrightarrow{\beta} \text{Map}(K^{\text{Bass}}, \Omega^\infty \mathcal{Pic}_+) \xrightarrow{\beta} \text{Map}(K^{\text{Bass}}, \Omega^\infty \mathcal{Pic}_+) \right)
\end{array}
\]

where we denote the induced maps by the same letters as the originals. We would like to show that the map \(\text{Map}(K^{\text{Bass}}, M) \to \text{Map}(L_{p^l} \Sigma^\infty \mathcal{Pic}_+, M) \) is an equivalence. By the above diagram, it suffices to show that the map

\[
s : \lim_n \text{Map}(\mathcal{Pic}_+, \Omega^\infty \mathcal{Pic}_+) \to \lim_n \text{Map}(\mathcal{Pic}_+, \Omega^\infty \mathcal{Pic}_+)
\]

is an equivalence. Furthermore, by the standard spectral sequence (or the Milnor sequence), it suffices to show that the map

\[
s : \lim_n \pi_k \text{Map}(\mathcal{Pic}_+, \Omega^\infty \mathcal{Pic}_+) \to \lim_n \pi_k \text{Map}(\mathcal{Pic}_+, \Omega^\infty \mathcal{Pic}_+)
\]
is an equivalence. The proof is reduced to the case $k = 0$ by replacing M. By Theorem 5.1.4, the map s induces an isomorphism

$$\left[\mathcal{P} \text{ic}_+, \Omega_{\pi_2}^{\infty - n} \Omega^{\infty} M \right]_n \simeq \text{Add}(K, \Omega_{\pi_2}^{\infty - n} \Omega^{\infty} M).$$

We claim that the map $[K, \Omega_{\pi_2}^{\infty - n} \Omega^{\infty} M] \to [K, \Omega_{\pi_2}^{\infty - n} \Omega^{\infty} M]_n$ factors through the subset of additive morphisms (the case $n = 0$ suffices). Indeed, if we are given a map $\alpha: K \to \Omega_{\pi_2}^{\infty - 1} \Omega^{\infty} M$, then it fits into a commutative diagram

$$\begin{align*}
\Omega K^G_n & \to K^{p!} \xrightarrow{\beta^{-1}} K \\
\Omega \Omega_{\pi_2}^{\infty - 1} \Omega^{\infty} M^G_n & \to \Omega_{\pi_2}^{\infty} \Omega^{\infty} M
\end{align*}$$

and horizontal maps have right inverses as motivic spectra. Hence, $\beta \cdot \alpha$ is additive.

Abstractly, we have shown the following. Let $A_n := \left[\mathcal{P} \text{ic}_+, \Omega_{\pi_2}^{\infty - n} \Omega^{\infty} M \right]_n$ and $B_n := [K, \Omega_{\pi_2}^{\infty - n} \Omega^{\infty} M]_n$. Then s induces a levelwise injection $A_n \to B_n$ and that $B_{n+1} \to B_n$ factors through A_n. This means that s exhibits A_\ast as a cofinal subsystem of B_\ast, and thus $s: R \text{lim} A_\ast \to R \text{lim} B_\ast$. This completes the proof. □

5.4. Universality of Selmer K-theory.

5.4.1 (Selmer K-theory). Let K^{et} denote the étale sheafification of the K-theory stack, which yields an étale S-stack for each qcqs derived scheme S. We have an evident morphism $Q(\mathcal{P} \text{ic}) \to K^{et}$ of E_∞-algebras in St_S, and K^{et} satisfies projective bundle formula with respect to this $Q(\mathcal{P} \text{ic})$-module structure by [CM21, Theorem 1.1]. In particular, K^{et} canonically yields an oriented motivic E_∞-ring spectrum over S, and it is uniquely lifted to a motivic E_∞-ring spectrum K^{Sel} in $\text{Sp}(\text{St}_S)$ by Theorem 2.4.5, which recovers the Selmer K-theory as in [Cla17, CM21].

5.4.2. Remark. The Selmer K-theory is left Kan extended from smooth \mathbb{Z}-algebras, because so is the $K(1)$-local K-theory and the topological cyclic homology, cf. [EHK+20, Appendix A] and [CMM21, Theorem G]. It follows that the base change functor $\text{St} \to \text{St}_S$ carries K^{et} to K^{et} and that the base change functor $\text{Sp}_{\pi_1} \to \text{Sp}_{\pi_1}(S)$ carries K^{et} to K^{et}.

5.4.3. Notation. We write $L_{pbf, et}$ for the composition

$$\begin{align*}
\text{Mod}_{Q(\mathcal{P} \text{ic})}(\text{Sp}(\text{St}_S^{et})) & \xrightarrow{L_{pbf, et}} \text{Mod}_{Q(\mathcal{P} \text{ic})}(\text{Sp}(\text{St}_S^{et})) \\
\text{Mod}_{Q(\mathcal{P} \text{ic})}(\text{Sp}(\text{St}_S)) & \xrightarrow{L_{pbf}} \text{Mod}^{pbf}_{Q(\mathcal{P} \text{ic})}(\text{Sp}(\text{St}_S^{et}))
\end{align*}$$

5.4.4. Theorem. For every qcqs derived scheme S, the canonical map

$$L_{pbf, et} S[\mathcal{P} \text{ic}] \to K^{\text{Sel}}$$

is an equivalence of E_∞-algebras in $\text{Sp}(\text{St}_S)$.

Proof. We apply the functor

$$L_{et}: \text{Mod}^{pbf}_{Q(\mathcal{P} \text{ic})}(\text{Sp}(\text{St}_S)) \to \text{Mod}^{pbf}_{Q(\mathcal{P} \text{ic})}(\text{Sp}(\text{St}_S^{et}))$$
to the equivalence $L_{\text{phbf}}[\mathcal{P}\text{ic}] \xrightarrow{\sim} K^{\text{Bass}}$ in Theorem 5.3.3. Then the left hand side becomes $L_{\text{phbf},\text{et}}[\mathcal{P}\text{ic}]$, and thus it remains to show that this functor carries K^{Bass} to K^{Sel}. We have a commutative diagram

$$
\begin{array}{ccc}
\text{Mod}_{Q(\mathcal{P}\text{ic})}(\text{Sp}(\text{St}_S)) & \longrightarrow & \text{Mod}_{Q(\mathcal{P}\text{ic})}(\text{Sp}(\text{St}_S^{\text{et}})) \\
\uparrow & & \uparrow \\
\text{Mod}^{\text{phbf}}_{Q(\mathcal{P}\text{ic})}(\text{St}_{S^+}) & \longrightarrow & \text{Mod}^{\text{phbf}}_{Q(\mathcal{P}\text{ic})}(\text{St}_{S^+}^{\text{et}}),
\end{array}
$$

where the vertical functors are equivalence by Lemma 5.2.5. Hence, it suffices to show that the bottom functor carries K to K^{et}, but it follows from the fact K^{et} satisfies projective bundle formula, cf. [CM21, Theorem 1.1].
A.1. Modules over commutative algebras. The operad $\mathcal{L}\mathcal{M}^\otimes$ defined in [Lur17b] plays a fundamental role in the theory of left modules over algebras. More specifically, $\mathcal{L}\mathcal{M}$-monoidal ∞-categories control the theory of ∞-categories left-tensored over monoidal ∞-categories and left module objects in an $\mathcal{L}\mathcal{M}$-monoidal ∞-category \mathcal{M}^\otimes are precisely morphisms of ∞-operads $\mathcal{L}\mathcal{M}^\otimes \to \mathcal{M}^\otimes$. In the body of this paper, we mainly employ the cases where monoidal ∞-categories underlie symmetric monoidal ∞-categories. While this can be dealt with as special cases, it is also possible to replace the operad $\mathcal{L}\mathcal{M}^\otimes$ by a simpler operad \mathcal{M}^\otimes and develop the theory in parallel with some simplification. The second viewpoint is sometimes more convenient and we lay down some of its foundations in this subsection.

A.1.1. Let \mathcal{O}^\otimes be an ∞-operad. Recall from [Lur17b] that an \mathcal{O}-monoidal ∞-category is an ∞-operad \mathcal{C}^\otimes equipped with a cocartesian fibration of ∞-operads $\mathcal{C}^\otimes \to \mathcal{O}^\otimes$. For \mathcal{O}-monoidal ∞-categories \mathcal{C}^\otimes and \mathcal{D}^\otimes, let $\text{Fun}^\mathrm{lax}(\mathcal{C}, \mathcal{D})$ denote the ∞-category of lax \mathcal{O}-monoidal functors and let $\text{Fun}^\mathrm{op}(\mathcal{C}, \mathcal{D})$ denote its full subcategory spanned by \mathcal{O}-monoidal functors.

A.1.2. Definition (The operad for modules). We define a category \mathcal{M}^\otimes as follows:

— An object in \mathcal{M}^\otimes is a pair (I, S) of a pointed finite set $I \in \text{Fin}_*$ and a pointed subset S of I.
— A morphism from (I, S) to (J, T) in \mathcal{M}^\otimes is a morphism $\alpha : I \to J$ in Fin_* such that $S \subset \alpha^{-1}(T)$ and that it restricts to a bijection $\alpha^{-1}(T^*) \to T^*$.

Then the forgetful functor $\mathcal{M}^\otimes \to \text{Fin}_*$ exhibits \mathcal{M}^\otimes as an operad. The underlying category \mathcal{M} has exactly two objects $a = ((1), *)$ and $m = ((1), (1))$. Note that there is a unique morphism $\text{Comm}^\otimes \to \mathcal{M}^\otimes$ of operads, which is given by $I \mapsto (I, *)$.

A.1.3. Remark. Let \mathcal{M}^\otimes be an \mathcal{M}-monoidal ∞-category. Then the underlying ∞-category of \mathcal{M}^\otimes is the disjoint coproduct $\mathcal{M}_a \sqcup \mathcal{M}_m$ and \mathcal{M}_a has a symmetric monoidal structure given by the base change $\mathcal{M}^\otimes \times_{\mathcal{M}^\otimes} \text{Comm}^\otimes$. The active morphism $((2), (0, 2)) \to ((1), (0, 1))$ in \mathcal{M}^\otimes induces a functor $\mathcal{M}_a \times \mathcal{M}_m \to \mathcal{M}_a$, which we call the tensor product.

A.1.4. Definition (Tensored ∞-category). Let \mathcal{C}^\otimes be a symmetric monoidal ∞-category. We say that an ∞-category \mathcal{M} is tensored over \mathcal{C} if we are supplied with an \mathcal{M}-monoidal ∞-category \mathcal{M}^\otimes, an equivalence of symmetric monoidal ∞-categories $\mathcal{C}^\otimes \simeq \mathcal{M}^\otimes$, and an equivalence of ∞-categories $\mathcal{M} \simeq \mathcal{M}_m$. Then we say that \mathcal{M}^\otimes exhibits \mathcal{M} as tensored over \mathcal{C}.

A.1.5. Remark. Let us clarify our notational convention about $\mathcal{M} \leftrightarrow \mathcal{M}^\otimes$. If \mathcal{M}^\otimes is an \mathcal{M}-monoidal ∞-category, then we usually denote by \mathcal{M} the underlying ∞-category, or rather the pair $(\mathcal{M}_a, \mathcal{M}_m)$. If \mathcal{M} is an ∞-category tensored over a symmetric monoidal ∞-category \mathcal{C}, then we usually denote by \mathcal{M}^\otimes the \mathcal{M}-monoidal ∞-category that exhibits \mathcal{M} as tensored over \mathcal{C}. In the second case, \mathcal{M} may also mean the pair $(\mathcal{C}, \mathcal{M})$, but this abuse will not cause confusion by specifying the symmetric monoidal ∞-category \mathcal{C}.

A.1.6. Remark. Let \mathcal{C}^\otimes be a symmetric monoidal ∞-category. Then the base change $\mathcal{C}^\otimes \times_{\text{Comm}^\otimes} \mathcal{M}^\otimes$ is an \mathcal{M}-monoidal ∞-category that exhibits \mathcal{C} as tensored over \mathcal{C}. We will sometimes regard \mathcal{C}^\otimes as an \mathcal{M}-monoidal ∞-category in this way.

A.1.7. Definition (Module object). Let \mathcal{M}^\otimes be an \mathcal{M}-monoidal ∞-category. Then we define

$$\text{Mod}(\mathcal{M}) := \text{Alg}_{\mathcal{M}}(\mathcal{M})$$

and call it the ∞-category of module objects in \mathcal{M}. Note that the pullback along $\mathcal{M}^\otimes \to \mathcal{M}^\otimes$ induces a functor $\text{Mod}(\mathcal{M}) \to \text{CAlg}(\mathcal{M}_a)$. For a commutative algebra object A in \mathcal{M}_a, we define an ∞-category
Mod$_A(\mathcal{M})$ by the pullback

\[
\begin{array}{ccc}
\text{Mod}_A(\mathcal{M}) & \longrightarrow & \text{Mod}(\mathcal{M}) \\
\downarrow & & \downarrow \\
* & \longrightarrow & \text{CAlg}(\mathcal{M}_A)
\end{array}
\]

and call it the ∞-category of A-module objects in \mathcal{M}.

A.1.8. Remark. An \mathcal{M}-monoidal ∞-category is canonically identified with a module object in Cat_∞. In particular, for a symmetric monoidal ∞-category \mathcal{C}, an ∞-category tensored over \mathcal{C} is identified with a \mathcal{C}-module object in Cat_∞.

A.1.9. Definition (Linear functor). Let \mathcal{M} and \mathcal{N} be ∞-categories tensored over symmetric monoidal ∞-categories \mathcal{C} and \mathcal{D} respectively and let $F: \mathcal{C} \to \mathcal{D}$ be a lax symmetric monoidal functor. Then we define an ∞-category $\text{Fun}^\text{lax}(\mathcal{M}, \mathcal{N})$ by the pullback

\[
\begin{array}{ccc}
\text{Fun}^\text{lax}(\mathcal{M}, \mathcal{N}) & \longrightarrow & \text{Fun}^\text{lax}_{\mathcal{M}}((\mathcal{C}, \mathcal{M}), (\mathcal{D}, \mathcal{N})) \\
\downarrow & & \downarrow \\
* & \longrightarrow & \text{Fun}^\text{lax}(\mathcal{C}, \mathcal{D})
\end{array}
\]

and call it the ∞-category of lax F-linear functors. If $F: \mathcal{C} \to \mathcal{D}$ is a symmetric monoidal functor, then we define an ∞-category $\text{Fun}^\text{F}(\mathcal{M}, \mathcal{N})$ by the pullback

\[
\begin{array}{ccc}
\text{Fun}^\text{F}(\mathcal{M}, \mathcal{N}) & \longrightarrow & \text{Fun}^\text{F}_{\mathcal{M}}((\mathcal{C}, \mathcal{M}), (\mathcal{D}, \mathcal{N})) \\
\downarrow & & \downarrow \\
* & \longrightarrow & \text{Fun}^\text{F}(\mathcal{C}, \mathcal{D})
\end{array}
\]

and call it the ∞-category of F-linear functors. If $\mathcal{C} = \mathcal{D}$ and F is the identity functor on \mathcal{C}, then we refer to a (lax) F-linear functor as a (lax) \mathcal{C}-linear functor.

A.1.10. Remark. Let \mathcal{M} and \mathcal{N} be ∞-categories tensored over symmetric monoidal ∞-categories \mathcal{C} and \mathcal{D} respectively and let $F: \mathcal{C} \to \mathcal{D}$ be a lax symmetric monoidal functor. Then a lax F-linear functor $\mathcal{M} \to \mathcal{N}$ induces a functor

$F: \text{Mod}_A(\mathcal{M}) \to \text{Mod}_{F(A)}(\mathcal{N})$

for each commutative algebra object A in \mathcal{C}.

A.1.11. Remark. Let \mathcal{M} and \mathcal{N} be ∞-categories tensored over symmetric monoidal ∞-categories \mathcal{C} and \mathcal{D} respectively and let $F: \mathcal{C} \to \mathcal{D}$ be a symmetric monoidal functor. By [Lur17b, 4.2.3.2], the canonical functor $\text{Mod}(\text{Cat}_\infty) \to \text{CAlg}(\text{Cat}_\infty)$ is cartesian and $F^*\mathcal{N}$ exhibits \mathcal{N} as tensored over \mathcal{C}. It follows that an F-linear functor $\mathcal{M} \to \mathcal{N}$ is identified with a \mathcal{C}-linear functor $\mathcal{M} \to \mathcal{N}$, which is further identified with a morphism in $\text{Mod}_\mathcal{C}(\text{Cat}_\infty)$. In other words, we have an equivalence

$\text{Fun}^\text{F}_{\mathcal{C}}(\mathcal{M}, \mathcal{N}) \simeq \text{Fun}^\text{F}(\mathcal{M}, \mathcal{N})$

and its groupoid core is equivalent to $\text{Map}_{\text{Mod}_{\mathcal{C}}(\text{Cat}_\infty)}(\mathcal{M}, \mathcal{N})$.

A.1.12 (Adjunction). Let $F: \mathcal{M} \to \mathcal{N}$ be an \mathcal{M}-monoidal functor between \mathcal{M}-monoidal ∞-categories. Suppose that the underlying functors $\mathcal{M}_a \to \mathcal{N}_a$ and $\mathcal{M}_m \to \mathcal{N}_m$ admit right adjoints. Then, by [Lur17b, 7.3.2.7], F admits a right adjoint G relative to \mathcal{M}^op and G is lax \mathcal{M}-monoidal. Consequently, we have an adjunction

$F: \text{Mod}(\mathcal{M}) \rightleftarrows \text{Mod}(\mathcal{N}): G.$
Furthermore, for a commutative algebra object A in \mathcal{C}, the induced functor $F: \text{Mod}_A(\mathcal{M}) \to \text{Mod}_{F(A)}(\mathcal{N})$ is a left adjoint to the composition

$$\text{Mod}_{F(A)}(\mathcal{N}) \xrightarrow{G} \text{Mod}_{GF(A)}(\mathcal{M}) \to \text{Mod}_A(\mathcal{M}),$$

where the second functor is the restriction of scalars along the unit map $A \to GF(A)$.

A.1.13 (Monoidal enrichment). Consider the functor

$$\text{Mod}: \text{Mod}(\text{Cat}_{\infty}) \to \text{Cat}_{\infty}.$$

This functor preserves limits since it is co-representable by $[\text{Lur17b}, 2.2.4.9]$, and thus it is uniquely promoted to a symmetric monoidal functor with respect to the cartesian symmetric monoidal structures. By applying Mod to this functor, we obtain a functor

$$\text{Mod}^\otimes: \text{Mod}(\text{Mod}(\text{Cat}_{\infty})) \to \text{Cat}_{\infty}.$$

Since the wedge product $\wedge: \mathbb{M}^\otimes \otimes \mathbb{M}^\otimes \to \mathbb{M}^\otimes$ induces a functor $\text{Mod}(\text{Cat}_{\infty}) \to \text{Mod}(\text{Mod}(\text{Cat}_{\infty}))$, we in particular obtain an \mathbb{M}-monoidal ∞-category $\text{Mod}(\mathcal{M})^\otimes$ for each \mathbb{M}-monoidal ∞-category \mathcal{M}^\otimes and it exhibits $\text{Mod}(\mathcal{M})$ as tensored over $\text{Mod}(\mathcal{M})$. Furthermore, the natural transformation $\text{Mod} \to \mathcal{C}\text{Alg}^o(-)_A$ yields an \mathbb{M}-monoidal functor $\text{Mod}(\mathcal{M})^\otimes \to \mathcal{C}\text{Alg}(\mathcal{M})^\otimes$.

A.1.14. Lemma. Let \mathcal{M}^\otimes be an \mathbb{M}-monoidal ∞-category such that the underlying ∞-categories \mathcal{M}_a and \mathcal{M}_m admit geometric realizations and that the tensor products

$$(\mathcal{M}_a \times \mathcal{M}_a \to \mathcal{M}_a) \quad \mathcal{M}_a \times \mathcal{M}_m \to \mathcal{M}_m$$

preserve geometric realizations in each variable. Then the \mathbb{M}-monoidal functor $\text{Mod}(\mathcal{M})^\otimes \to \mathcal{C}\text{Alg}(\mathcal{M})^\otimes$ is cocartesian. Furthermore, the associated functor $\mathcal{C}\text{Alg}(\mathcal{M}_a)^\otimes \to \text{Cat}_{\infty}$ is a lax cartesian structure, where we regard $\mathcal{C}\text{Alg}(\mathcal{M}_a)^\otimes$ as an \mathbb{M}-monoidal ∞-category, and thus we obtain a lax \mathbb{M}-monoidal functor

$$\Theta_\mathcal{M}: \mathcal{C}\text{Alg}(\mathcal{M}_a)^\otimes \to \text{Cat}_{\infty}.$$

Proof. The proof is parallel to $[\text{Lur17b}, 4.5.3.1]$. The assertion that $\mathcal{C}\text{Alg}(\mathcal{M}_a)^\otimes \to \text{Cat}_{\infty}$ is a lax cartesian structure is a formal consequence of the Segal condition for $\text{Mod}(\mathcal{M})^\otimes$. \hfill \square

A.1.15. Remark. In the situation of Lemma A.1.14, we in particular obtain a functor

$$\Theta_\mathcal{M}: \mathcal{C}\text{Alg}(\mathcal{M}_a) \to \text{Mod}(\text{Cat}_{\infty}),$$

which classifies module objects in \mathcal{M}. This functor carries a commutative algebra object A in \mathcal{M}_a to an \mathbb{M}-monoidal ∞-category $\text{Mod}_A(\mathcal{M})^\otimes$ that exhibits $\text{Mod}_A(\mathcal{M})$ as tensored over $\text{Mod}_A(\mathcal{M})$, where the tensor product is given by the relative tensor product \otimes_a, and carries a morphism $A \to B$ in $\mathcal{C}\text{Alg}(\mathcal{M}_a)$ to an \mathbb{M}-monoidal functor

$$B \otimes_A: \text{Mod}_A(\mathcal{M})^\otimes \to \text{Mod}_B(\mathcal{M})^\otimes,$$

which we call the base change.

A.1.16. Lemma. There is an approximation $(\text{Fin}_a)_{(1)} \to \mathbb{M}^\otimes$ to \mathbb{M}^\otimes in the sense of $[\text{Lur17b}, 2.3.3.6]$.

Proof. The full subcategory of \mathbb{M}^\otimes spanned by (I, S) with $|S| \leq 1$ is canonically equivalent to $(\text{Fin}_a)_{(1)}$. Then it is straightforward to check that the inclusion $(\text{Fin}_a)_{(1)} \to \mathbb{M}^\otimes$ satisfies the condition in $[\text{Lur17b}, 2.3.3.6]$ \hfill \square

A.1.17. Remark. We set $\mathbb{M}^\otimes := (\text{Fin}_a)_{(1)}$. We call a morphism in \mathbb{M}^\otimes inert if it lies over an inert morphism in Fin_a. For an \mathbb{M}-monoidal ∞-category \mathcal{M}^\otimes, let $\text{Mod}(\mathcal{M})'$ be the full subcategory of $\text{Fun}_{\mathbb{M}^\otimes}(\mathbb{M}^\otimes, \mathcal{M}^\otimes)$ spanned by those functors $\mathbb{M}^\otimes \to \mathcal{M}^\otimes$ which carries inert morphisms to cocartesian morphisms over \mathbb{M}^\otimes. Then it follows from $[\text{Lur17b}, 2.3.3.23]$ that the pre-composition by $\mathbb{M}^\otimes \to \mathbb{M}^\otimes$ induces an equivalence

$$\text{Mod}(-) \xrightarrow{\sim} \text{Mod}(-)'.$$
For a symmetric monoidal ∞-category \(\mathcal{C} \), the ∞-category \(\text{Mod}(\mathcal{C}) \) is exactly \(\text{Mod}^{\text{Comm}}(\mathcal{C}) \) in [Lur17b, 3.3.3.8]. By applying this equivalence to \(\text{Cat}_{\omega} \), we see that giving an \(M \)-monoidal ∞-category \(\mathcal{M}^{\otimes} \) is equivalent to giving a cocartesian fibration \(\mathcal{M}^{\otimes} \to M^{\otimes} \) such that, for every \(n \geq 0 \) and \(\alpha \in M^{\otimes}_{(n)} \), the induced functor

\[
\mathcal{M}^{\otimes}_{\alpha} \to \prod_{1 \leq i \leq n} \mathcal{M}^{\otimes}_{\rho_i(\alpha)}
\]

is an equivalence, where \(\rho_i : (n) \to (1) \) is the inert morphism with \(\rho_i^{-1}(1) = i \). Concretely, \(\mathcal{M}^{\otimes} \) is given by the pullback \(\mathcal{M}^{\otimes} = \mathcal{M}^{\otimes} \times_{\text{set}} M^{\otimes} \).

A.1.18 (Relation to left modules in [Lur17b]). If we let \(LM^{\otimes} \) be the operad in [Lur17b, 4.2.1.7], then there is a canonical morphism of operads \(LM^{\otimes} \to M^{\otimes} \) which makes the diagram

\[
\begin{array}{ccc}
LM^{\otimes} & \longrightarrow & M^{\otimes} \\
\downarrow & & \downarrow \\
\text{Assoc}^{\otimes} & \longrightarrow & \text{Comm}^{\otimes}
\end{array}
\]

commutative. For an \(M \)-monoidal ∞-category \(\mathcal{M}^{\otimes} \), there is a canonical equivalence

\[\text{Mod}(\mathcal{M}) \simeq \text{LMod}(\mathcal{M}) \times_{\text{Alg}(\mathcal{M}_a)} \text{CAlg}(\mathcal{M}_a), \]

where \(\text{LMod}(\mathcal{M}) \) is the \(\infty \)-category of left module objects in \(\mathcal{M} \), cf. [Lur17b, 4.2.1.13].

A.2. **Presentably \(M \)-monoidal ∞-categories.**

A.2.1. Let \(\Theta^{\otimes} \) be an \(\infty \)-operad. A presentably \(\Theta \)-monoidal ∞-category is an \(\Theta \)-monoidal ∞-category \(\mathcal{E}^{\otimes} \) such that, for each \(x \in \Theta \), the fiber \(\mathcal{E}_x \) is a presentable ∞-category and that the \(\Theta \)-monoidal structure on \(\mathcal{E} \) is compatible with small colimits in the sense of [Lur17b, 3.1.1.18]. A presentably \(\Theta \)-monoidal ∞-category is identified with an \(\Theta \)-algebra object in \(\mathcal{P}^{L} \).

A.2.2. **Definition** (Presentably tensored over \(\mathcal{M} \)). Let \(\mathcal{E}^{\otimes} \) be a presentably symmetric monoidal ∞-category. We say that an \(\infty \)-category \(\mathcal{M} \) is presentably tensored over \(\mathcal{E} \) if we are supplied with a presentably \(M \)-monoidal ∞-category that exhibits \(\mathcal{M} \) as tensored over \(\mathcal{E} \). An \(\infty \)-category tensored presentably over \(\mathcal{E} \) is identified with a \(\mathcal{E} \)-module object in \(\mathcal{P}^{L} \).

A.2.3. **Remark.** Let \(\mathcal{M}^{\otimes} \) be a presentably \(M \)-monoidal ∞-category. By [Lur17b, 4.8.3.22], \(\text{Mod}^{L}(\mathcal{M})^{\otimes} \) is a presentably \(M \)-monoidal ∞-category for each commutative algebra object \(A \) in \(\mathcal{M}_a \). It follows that the functor \(\Theta_{\mathcal{M}} : \text{CAlg}(\mathcal{M}_a) \to \text{Mod}(\mathcal{C}^{\infty}_0) \) classifying module objects in \(\mathcal{M} \) (Lemma A.1.14) induces a functor

\[\Theta_{\mathcal{M}} : \text{CAlg}(\mathcal{M}_a) \to \text{Mod}(\mathcal{P}^{L}). \]

Warn that the \(M \)-monoidal ∞-category \(\text{Mod}(\mathcal{M})^{\otimes} \) is not presentably \(M \)-monoidal though the underlying \(\infty \)-categories are presentable, because the tensor products are not distributive with respect to coproducts.

A.2.4. **Lemma.** Let \(\mathcal{M}^{\otimes} \) be a presentably \(M \)-monoidal ∞-category and \(A \) a commutative algebra object in \(\mathcal{M}_a \). Then there is a natural equivalence of \(M \)-monoidal ∞-categories

\[\text{Mod}_{\mathcal{M}_a}(\mathcal{M}^{\otimes}) \otimes_{\mathcal{M}_a} \mathcal{M} \simeq \text{Mod}_{\mathcal{M}_a}(\mathcal{P}^{L}), \]

where the tensor product is taken in \(\text{Mod}_{\mathcal{M}_a}(\mathcal{P}^{L}) \).

Proof. This is a special case of [Lur17b, 4.8.4.6]. \(\square \)
A.3. Constructions of \mathcal{M}-monoidal structures.

A.3.1 (Trivial \mathcal{M}-monoidal structure). Let \mathcal{K} be an ∞-category. Then there exists a unique \mathcal{M}-monoidal ∞-category \mathcal{K}^\otimes that exhibits \mathcal{K} as tensored over \ast, since we have an equivalence $\text{Mod}_1(\text{Cat}_{\infty}) \simeq \text{Cat}_{\infty}$. We refer to this \mathcal{M}-monoidal structure on \mathcal{K} as the trivial \mathcal{M}-monoidal structure. Concretely, the cocartesian fibration $\mathcal{K}^\otimes \to \mathcal{M}^\otimes$ is the classified by the left Kan extension of $\mathcal{K} : \text{Triv}^\otimes \to \text{Cat}_{\infty}$ along $\text{Triv}^\otimes \to \mathcal{M}^\otimes$.

A.3.2. Lemma. Let \mathcal{K} be a small ∞-category, \mathcal{M}^\otimes an \mathcal{M}-monoidal ∞-category, and A a commutative algebra object in \mathcal{M}_a. Then there is a natural equivalence
\[\text{Fun}_A^\text{lex}(\mathcal{K}, \mathcal{M}) \simeq \text{Fun}(\mathcal{K}, \text{Mod}_A(\mathcal{M})), \]
where \mathcal{K} is equipped with the trivial \mathcal{M}-monoidal structure.

Proof. This is obvious when $\mathcal{K} = \ast$. We reduce the assertion to this case by showing that the contravariant functor $\mathcal{K} \to \text{Fun}_A^\text{lex}(\mathcal{K}, \mathcal{M})$ carries colimits to limits. By definition,
\[\text{Fun}_A^\text{lex}(\mathcal{K}, \mathcal{M}) = \text{Fun}_A^\text{lex}(\mathcal{K}, \mathcal{M}) \times_{\text{Cat}_{\mathcal{M}_a}} \{A\}, \]
and thus it suffices to show that $\mathcal{K} \to \text{Fun}_A^\text{lex}(\mathcal{K}, \mathcal{M})$ carries colimits to limits. Note that $\text{Fun}_A^\text{lex}(\mathcal{K}, \mathcal{M})$ is the mapping ∞-category of the ∞-category $(\text{Op}_\infty)/\mathcal{M}^\otimes$ of \mathcal{M}-operads over \mathcal{M}^\otimes. Hence, it suffices to show that the functor
\[\text{Cat}_{\infty} \to (\text{Op}_\infty)_{/\mathcal{M}^\otimes}, \mathcal{K} \to \mathcal{K}^\otimes \]
preserves colimits. This follows from the following observation: Given a diagram $\{\mathcal{K}_i\}_{i \in I}$ of small ∞-categories, the colimit colim \mathcal{K}_i taken as ∞-preoperad is an ∞-operad. \qed

A.3.3. Construction (Pointwise \mathcal{M}-monoidal structure). Consider the functor
\[\text{Fun}(\mathcal{K}, -) : (\text{Cat}_{\infty})^{\ast \text{op}} \times \text{Cat}_{\infty} \to \text{Cat}_{\infty}. \]
Since $\text{Fun}(\mathcal{K}, -)$ preserves limits for each small ∞-category \mathcal{K}, we obtain an induced functor
\[\text{Fun}(\mathcal{K}, -)^\otimes : (\text{Cat}_{\infty})^{\ast \text{op}} \times \text{Mod}(\text{Cat}_{\infty}) \to \text{Mod}(\text{Cat}_{\infty}). \]
In particular, if \mathcal{K} is a small ∞-category and \mathcal{M}^\otimes is an \mathcal{M}-monoidal ∞-category, then $\text{Fun}(\mathcal{K}, \mathcal{M})^\otimes$ is an \mathcal{M}-monoidal ∞-category that exhibits $\text{Fun}(\mathcal{K}, \mathcal{M}_{\text{an}})$ as tensored over $\text{Fun}(\mathcal{K}, \mathcal{M}_a)$. We refer to this \mathcal{M}-monoidal structure on $\text{Fun}(\mathcal{K}, \mathcal{M})$ as the pointwise \mathcal{M}-monoidal structure.

We generalize this construction to relative functors. Let $\mathcal{M}^\otimes \to \mathcal{N}^\otimes$ be an \mathcal{M}-monoidal functor between \mathcal{M}-monoidal ∞-categories and let $F : \mathcal{K} \to \mathcal{N}_a$ be an arbitrary functor. Note that we can regard F as an \mathcal{M}-monoidal functor $\mathcal{M}^\otimes \to \text{Fun}(\mathcal{K}, \mathcal{N})^\otimes$. We define an \mathcal{M}-monoidal ∞-category $\text{Fun}_F(\mathcal{K}, \mathcal{M})^\otimes$ by the pullback
\[
\begin{array}{ccc}
\text{Fun}_F(\mathcal{K}, \mathcal{M})^\otimes & \longrightarrow & \text{Fun}(\mathcal{K}, \mathcal{M})^\otimes \\
\downarrow & & \downarrow \\
\mathcal{M}^\otimes & \xrightarrow{F} & \text{Fun}(\mathcal{K}, \mathcal{N})^\otimes.
\end{array}
\]
Then $\text{Fun}_F(\mathcal{K}, \mathcal{M})^\otimes$ exhibits $\text{Fun}_F(\mathcal{K}, \mathcal{M}_{\text{an}})$ as tensored over $\text{Fun}_F(\mathcal{K}, \mathcal{M}_a)$, where the structure functor $\mathcal{K} \to \mathcal{N}_a$ is the constant functor onto the unit in \mathcal{N}_a.

A.3.4. Construction (Fiberwise \mathcal{M}-monoidal structure). Let \mathcal{K} be a small ∞-category and \mathcal{C} a symmetric monoidal ∞-category. Suppose we are given a functor $X : \mathcal{K} \to \text{Mod}_{\mathcal{C}}(\text{Cat}_{\infty})$ and let $\mathcal{E} \to \mathcal{K}$ be the cocartesian fibration classified by X. Then X lifts to a lax \mathcal{M}-monoidal functor $\tilde{X} : \mathcal{K}^\otimes \to \text{Cat}_{\infty}$ by Lemma A.3.2. Let $\mathcal{E}^\otimes \to \mathcal{K}^\otimes$ be the cocartesian fibration classified by \tilde{X}. Then \mathcal{E}^\otimes is an \mathcal{M}-monoidal ∞-category that exhibits \mathcal{E} as tensored over \mathcal{C} and the functor $\mathcal{E}^\otimes \to \mathcal{K}^\otimes$ is \mathcal{M}-monoidal. We refer to this \mathcal{M}-monoidal structure on \mathcal{E} as the fiberwise \mathcal{M}-monoidal structure.
Combining this with Construction A.3.3, we get an \(M \)-monoidal \(\infty \)-category \(\text{Fun}_\mathcal{K} (\mathcal{K}, \mathcal{E})^\otimes \) that exhibits \(\text{Fun}_\mathcal{K} (\mathcal{K}, \mathcal{E}) \) as tensored over \(\text{Fun}(\mathcal{K}, \mathcal{E}) \).

A.4. Day convolution. We reformulate the Day convolution monoidal structures as in [Lur17b, 2.2.6] in a way that is convenient for our purpose.

A.4.1. Construction (Day convolution). By [Lur17b, 4.8.1.3] (see also [Lur17b, 4.8.1.8]), we have a symmetric monoidal functor

\[
\mathcal{P} : \text{Cat}_{\infty}^{\text{sm}} \rightarrow \text{Pr}^L,^\otimes,
\]

which carries a small \(\infty \)-category \(\mathcal{K} \) to the \(\infty \)-category \(\mathcal{P}(\mathcal{K}) \) of presheaves on \(\mathcal{K} \) and a functor \(f : \mathcal{K} \rightarrow \mathcal{L} \) between small \(\infty \)-categories to the left Kan extension \(f^! : \mathcal{P}(\mathcal{K}) \rightarrow \mathcal{P}(\mathcal{L}) \). Note that, for a small \(\infty \)-category \(\mathcal{K} \) and a presentable \(\infty \)-category \(\mathcal{E} \), we have a canonical equivalence

\[
\text{Fun}(\mathcal{K}, \mathcal{E}) \simeq \mathcal{P}(\mathcal{K}^{\text{op}})^\otimes \otimes \mathcal{E},
\]

where the tensor product is taken in \(\text{Pr}^L \). On the other hand, since the symmetric monoidal \(\infty \)-category \(\text{Pr}^L,^\otimes \) can be regarded as an algebra object in \(\text{CAlg}(\text{Cat}_{\infty}) \), we have a symmetric monoidal functor

\[
\mathcal{L} : \text{Pr}^L,^\otimes \times_{\text{Fin}} \text{Pr}^L,^\otimes \rightarrow \text{Pr}^L,^\otimes,
\]

which lifts the usual tensor product. By composing those two symmetric monoidal functors, we obtain a symmetric monoidal functor

\[
\text{Fun}(-,-)^\otimes : \text{Cat}_{\infty}^{\text{sm}} \times_{\text{Fin}} \text{Pr}^L,^\otimes \rightarrow \text{Pr}^L,^\otimes,
\]

which lifts the functor \((\mathcal{K}, \mathcal{E}) \rightarrow \text{Fun}(\mathcal{K}, \mathcal{E}) \).

A.4.2. Remark. By applying \(\text{Mod} \) to the symmetric monoidal functor \(\text{Fun}(-,-)^\otimes \), we obtain a functor

\[
\text{Fun}(-,-)^\otimes : \text{Mod}(\text{Cat}_{\infty}^{\text{sm}}) \times \text{Mod}(\text{Pr}^L) \rightarrow \text{Mod}(\text{Pr}^L).
\]

For a small \(M \)-monoidal \(\infty \)-category \(\mathcal{K}^\otimes \) and a presentably \(M \)-monoidal \(\infty \)-category \(\mathcal{M}^\otimes \), the resulting presentably \(M \)-monoidal \(\infty \)-category \(\text{Fun}(\mathcal{K}, \mathcal{M})^\otimes \) coincides with the one constructed in [Lur17b, 2.2.6] and we have equivalences

\[
\text{Mod}(\text{Fun}(\mathcal{K}, \mathcal{M})) \simeq \text{Fun}_{\text{lex}}^{\text{las}}(\mathcal{K}, \mathcal{M})
\]

\[
\text{CAlg}(\text{Fun}(\mathcal{K}, \mathcal{M})) \simeq \text{Fun}_{\text{lex}}^{\text{las}}(\mathcal{K}_a, \mathcal{M}_a)
\]

\[
\text{Mod}_F(\text{Fun}(\mathcal{K}, \mathcal{M})) \simeq \text{Fun}_{\text{lex}}^{\text{las}}(\mathcal{K}_m, \mathcal{M}_m),
\]

where \(F \) is a lax symmetric monoidal functor \(\mathcal{K}_a \rightarrow \mathcal{M}_a \). We refer to this \(M \)-monoidal structure on \(\text{Fun}(\mathcal{K}, \mathcal{M}) \) as the Day convolution \(M \)-monoidal structure.

A.4.3. Remark. The Day convolution \(M \)-monoidal structure is compatible with the pointwise \(M \)-monoidal structure in the following cases:

(i) If \(\mathcal{K}^\otimes \) is a small \(M \)-monoidal \(\infty \)-category with the trivial \(M \)-monoidal structure, then the Day convolution \(M \)-monoidal structure on \(\text{Fun}(\mathcal{K}, \mathcal{M}) \) is the restriction of scalars of the pointwise \(M \)-monoidal structure along the symmetric monoidal functor \(\mathcal{M}_a \rightarrow \text{Fun}(\mathcal{K}, \mathcal{M}_a) \).

(ii) If \(\mathcal{K}^\otimes \) is a cocartesian symmetric monoidal \(\infty \)-category, then the Day convolution \(M \)-monoidal structure on \(\text{Fun}(\mathcal{K}, \mathcal{M}) \) is identified with the pointwise \(M \)-monoidal structure.

A.4.4. Lemma. Let \(\mathcal{K}^\otimes \) be a small \(M \)-monoidal \(\infty \)-category and \(\mathcal{M}^\otimes \) a presentably \(M \)-monoidal \(\infty \)-category. Then there is a natural equivalence of \(M \)-monoidal \(\infty \)-categories

\[
\text{Fun}(\mathcal{K}, \mathcal{M}) \simeq \text{Fun}(\mathcal{K}, \mathcal{M}_a) \otimes_{\mathcal{K}_a} \mathcal{M},
\]

where the tensor product is taken in \(\text{Mod}_{\mathcal{K}_a}(\text{Pr}^L) \) and \(\text{Fun}(\mathcal{K}, \mathcal{M}_a) \) is tensored over \(\mathcal{M}_a \) by the restriction of scalars along the the symmetric monoidal functor \(\mathcal{M}_a \rightarrow \text{Fun}(\mathcal{K}_a, \mathcal{M}_a) \) obtained as the left Kan extension along \(* \rightarrow \mathcal{K}_a \).
Proof. This is immediate from the equivalence \(\mathcal{F}(\mathcal{X}, \mathcal{M}) \simeq \mathcal{P}(\mathcal{X}^{op}) \otimes \mathcal{M} \).

A.5. Smashing localizations. A criterion for smashing localization (cf. 1.1) is given.

A.5.1. Definition (Ideal/co-ideal). Let \(\mathcal{C} \) be a symmetric monoidal \(\infty \)-category and \(\mathcal{I} \) a full subcategory of \(\mathcal{C} \). Then:

(i) \(\mathcal{I} \) is an ideal if for every \(c \in \mathcal{C} \) and \(x \in \mathcal{I} \) we have \(c \otimes x \in \mathcal{I} \).

Suppose further that \(\mathcal{C} \) is closed. Then:

(ii) \(\mathcal{I} \) is a co-ideal if for every \(c \in \mathcal{C} \) and \(x \in \mathcal{I} \) we have \(\text{Map}(c, x) \in \mathcal{I} \).

A.5.2. Lemma. Let \(\mathcal{C} \) be a symmetric monoidal \(\infty \)-category and \(L : \mathcal{C} \to \mathcal{C}' \) a localization. Then the following are equivalent:

(i) \(L \) is smashing.

(ii) \(L \) is symmetric monoidal and \(\mathcal{C}' \) is an ideal of \(\mathcal{C} \).

Suppose that \(\mathcal{C} \) is closed, then these are further equivalent to:

(iii) \(\mathcal{C}' \) is an ideal and co-ideal of \(\mathcal{C} \).

Proof. The implication (i)\(\Rightarrow \) (ii) is obvious. Assume the condition (ii). Then it follows from [Lur17b, 4.1.7.4] that the essential image \(L' \mathcal{C} \) admits a unique symmetric monoidal structure for which the functor \(L : \mathcal{C} \to L' \mathcal{C} \) is promoted to a symmetric monoidal functor. In particular, \(A := L(1) \) is a unit object in \(L' \mathcal{C} \) and thus \(L' \mathcal{C} \simeq \text{Mod}_A(L' \mathcal{C}) \subset \text{Mod}_A(\mathcal{C}') \). Since \(L' \mathcal{C} \subset \mathcal{C}' \) is an ideal, we see that \(A \) is an idempotent algebra in \(\mathcal{C}' \). We claim \(\text{Mod}_A(\mathcal{C}) = L' \mathcal{C} \), which proves that \(L \) is smashing. We have already checked one inclusion. To show the other inclusion note that, for \(x \in \text{Mod}_A(\mathcal{C}) \), we have

\[
x \otimes A \simeq (x \otimes_A A) \otimes x \simeq x \otimes_A (A \otimes A) \simeq x \otimes_A A \simeq x.
\]

Since \(L' \mathcal{C} \subset \mathcal{C}' \) is an ideal and \(A \subset L' \mathcal{C} \), we have \(x \subset L' \mathcal{C} \). This proves the claim and thus (ii)\(\Rightarrow \) (i).

Suppose that \(\mathcal{C} \) is closed. Then we have \(\text{Map}(x \otimes c, y) \simeq \text{Map}(x, \text{Map}(c, y)) \) for \(x, y, c \in \mathcal{C} \). It follows from this equivalence that \(c \otimes - \) preserves \(L \)-equivalences if and only if \(\text{Map}(c, -) \) preserves \(L \)-local objects. The later is exactly the condition \(L' \mathcal{C} \subset \mathcal{C}' \) is a co-ideal and thus (ii)\(\Leftrightarrow \) (iii).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2.

E-mail address: tannala@math.ubc.ca

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF COPENHAGEN, UNIVERSITETSPARKEN 5, DK-2100 COPENHAGEN Ø.

E-mail address: ryomei@math.ku.dk